博碩士論文 102323007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.235.182.206
姓名 楊意驊(Yi-hua Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 顆粒形狀對顆粒體在旋轉鼓內流動行為之影響
相關論文
★ 圓片顆粒體在振動床迴流現象之研究-電腦模擬與實驗之驗證★ 水中顆粒體崩塌分析與電腦模擬比對
★ 以離散元素法探討具有傾斜開槽之晶體結構在單軸拉力作用下的裂縫生成與傳播行為★ 可破裂顆粒在單向度壓力及膨脹收縮 之力學行為
★ 掉落體衝擊顆粒床之力學與運動行為的研究 : DEM的實驗驗證及內部性質探討★ 掉落體衝擊不同材質與形狀顆粒床之運動及力學行為
★ 顆粒體在具阻礙物滑道中流動行為研究:DEM的實驗驗證及傳輸性質與內部性質探討★ 以物理實驗探討顆粒形狀 對顆粒體在振動床中傳輸性質的影響
★ 以物理實驗探討顆粒形狀 對顆粒體在旋轉鼓中傳輸性質的影響★ 一般顆粒體與可破裂顆粒體在單向度束制壓縮作用下之力學行為
★ 以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為★ 振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應
★ 非球形顆粒體在剪力槽中的流動行為追蹤與分析★ 以有限元素法模擬單向度束制壓縮下顆粒體與容器壁間的互制行為及摩擦效應的影響
★ 以離散元素法分析苗栗縣南庄鄉鹿湖山區之土石崩塌行為及內部性質之探討★ 顆粒外形對顆粒體在滑坡道流動行為之影響及內部性質之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用離散元素法(DEM, discrete element method)模擬球形及非球形顆粒在類二維的旋轉鼓中的運動行為。本研究旨在探討因顆粒形狀所產生的差異,利用多球法分別組成球形、雙球形、兩種橢球形及膠囊形顆粒,藉由計算不同的填充率及轉速下旋轉鼓中顆粒的擾動速度分佈、粒子溫度、擴散位移、和平均動能等傳輸性質,探討五種形狀顆粒的流動行為。本研究結果顯示,深度方向及旋轉方向的流動層擾動速度分佈呈現馬克士威速度分佈,且以膠囊形速度最均勻,旋轉方向的擾動速度分佈圖中,其旋轉速度的均勻程度以膠囊形最大、球形最小,且不隨旋轉鼓受載條件改變而影響。粒子溫度的結果則顯示五種形狀顆粒的總體粒子溫度趨勢與平移的粒子溫度相近,且因受到互鎖效應之影響,使得各形狀顆粒的分佈及大小皆有不同。五種顆粒的擴散位移與時間的關係圖趨勢相當接近直線,旋轉的擴散係數以球形最大、橢球形Ⅱ最小,且其大小排序也不隨旋轉鼓受載條件改變而影響。平均動能的結果則顯示,顆粒的堆積崩塌與顆粒形狀有密切相關,使各形狀顆粒的圖形並不交疊。沿著深度方向的速度分佈可以發現,主動層呈現混合型的流況,且愈接近主動層表面,則各形狀顆粒的差異愈明顯。剪應變率的結果顯示,以橢球形Ⅱ成長最快且有最大的剪應變率,而膠囊形的剪應變率則為最小,最大剪應變率則發生在距主動層約4顆顆粒短軸直徑處。在翻滾形態時,流動層的形狀會隨轉速變化,且各形狀顆粒的流動層形狀及變化皆不相同。動態安息角的部分則發現,除了雙球形顆粒之外,動態安息角會隨轉速的變大而增加,而填充率增加也會使其小幅提升,雙球形顆粒則因受到較強的互鎖效應之影響,使其只有在較高轉速下才有此現象,動態安息角幾乎以球形為最小,橢球形Ⅱ則略大於橢球形Ⅰ,膠囊形顆粒則大致介於橢球形Ⅰ及球形之間。
摘要(英) This thesis studies dynamic behavior of spherical and non-spherical particles in a qusi-2D rotating drum by using discrete element method (DEM) simulation. The purpose of this study is to investigate the effect of particle shape on the flow behavior of granular materials. Five kinds of particles with different shapes, namely spherical, cylindrical, ellipsoidalⅠ(aspect ratio of 1.5), ellipsoidalⅡ (aspect ratio of 2.0) and paired particles, are selected and made up of spherical elements by using multi-sphere method. The transport properties, including the local average velocities, local fluctuation velocities, granular temperatures, fluctuation velocity distributions and self-diffusion coefficients, were calculated for investigating the shape effect. The numerical results show that the distributions of fluctuation velocity in the transverse and rotational directions are very close to the Maxwellian distributions, and that the cylindrical particles exhibit the most uniform velocity distribution. The total and translation granular temperatures are almost equal, indicating that the flow behavior is not dominated by particle rotation but particle translation. The particle shape effect leads to the differences in the magnitude and distribution of the granular temperatures. The mean square diffusive displacements and rotations increase linearly with time. In the diffusive rotations, spherical and ellipsoidalⅡ particles respectively produce the largest and smallest self-diffusion coefficients. The stream-wise velocity along with depth shows a mixed velocity profile for the five kinds of particles, and the maximum shear rate occurs beneath the flowing surface (about four times particle diameter in depth). The ellipsoidalⅡ particles exhibit the highest shear rate, whereas the cylindrical particles exhibit the lowest shear rate. The paired particles have the strongest inter-locking effect, hence inducing the largest dynamic angle of repose.
關鍵字(中) ★ 顆粒物質
★ 旋轉鼓
★ 非球形顆粒
★ 形狀效應
★ 離散元素法
關鍵字(英) ★ granular assembly
★ rotating drum
★ non-spherical particle
★ shape effect
★ DEM
論文目次 摘要 i
Abstract ii
目錄 iii
附表目錄 v
附圖目錄 vi
第一章 緒論 1
1-1 旋轉鼓及顆粒體簡介 1
1-1-1 顆粒體 1
1-1-2 旋轉鼓 1
1-1-3 旋轉鼓內顆粒的流動型態 2
1-1-4 旋轉鼓內的分層與動態安息角 4
1-2 球形與非球形顆粒 5
1-3 研究動機 6
1-4 研究架構 6
第二章 研究方法及原理 8
2-1 離散元素法及模型設計 8
2-1-1 離散元素法及建模理論 8
2-1-2 模型設計 13
2-2 傳輸性質 15
2-3 模擬及參數決定之方法 17
2-3-1 填充之顆粒數的決定方法 17
2-3-2 模擬設置 18
2-3-3 實驗方法 18
2-3-4 動態安息角的量測方法 19
第三章 結果與討論 20
3-1 速度向量場 20
3-2 沿著深度方向之速度分佈 21
3-3 動態安息角 23
3-4 擾動速度 24
3-5 粒子溫度 25
3-6 擴散位移與平均動能 26
第四章 結論 28
參考文獻 30
參考文獻 [1] A. Rosato, K. J. Strandburg and F. Prinz, and R. H. Swendsen, “Why the Brazil nuts are on top: size segregation of particulate matter by shaking” Physical Review Letters, 58 (1987) 1038-1040.
[2] D. V. Khakhar, J. J. McCarthy, and J. M. Ottino, “Radial segregation of granular mixtures in rotating cylinder” Physics of Fluids, 9 (1997) 3600-3614.
[3] Y. Xu, C. Xu, Z. Zhou, J. Du and D. Hu, “2D DEM simulation of particle mixing in ro-tating drum: A parametric study” Particuology, 8 (2010) 141-149.
[4] H. Henein, J. K. Brimacomble, and A.P. Watkinson, “Experimental study of transverse bed motion in rotary kilns” Metallurgical Transactions B, 14 (1983) 191-205.
[5] J Rajchenbach., “Flow in powders: from discrete avalanches to continuous regime,” Physical Review Letters, 65 (1990) 2221-2224.
[6] J. Mellmann., “The transverse motion of solids in rotating cylinders – forms of motion and transition behavior,” Powder Technology, 118 (2001) 251-270.
[7] K. M. Hill, and J Kakalios., “Reversible axial segregation of binary mixtures of granular materials,” Physical Review E, 49 (1994) 3610-3613.
[8] A.V. Orpe and D.V. Khakhar, “Scaling relations for granular flow in quasi-two- dimen-sional rotating cylinders,” Physical Review E, 64 (2001) 031302.
[9] X. Y. Liu, E. Spechta and J. Mellmann, “Experimental study of the lower and upper an-gles of repose of granular materials in rotating drums,” Powder Technology, 154 (2005) 125-131.
[10] O. Dubé, E. Alizadeh, J.Chaouki and F. Bertrand, “Dynamics of non-spherical particles in a rotating drum,” Chemical Engineering Science, 101 (2013) 486-502.
[11] A. A. Boateng and P. V. Barr, “Granular flow behaviour in the transverse plane of a par-tially filled rotating cylinder,” Journal of Fluid Mechanics, 330 (1997) 233-249.
[12] A. A. Boateng, “Boundary layer modeling of granular flow in the transverse plane of a partially filled rotating cylinder,” International Journal of Multiphase Flow, 24 (1998) 499-521.
[13] N. Jain, J. M. Ottino and R. M. Lueptow, “An experimental study of the flowing granular layer in a rotating tumbler,” Physics of Fluids, 14 (2002) 572-582.
[14] D. R. van Puyvelde, B. R. Young, M. A. Wilson, S. J. Schmidt, “Modelling Transverse Segregation of Particulate Solids in a Rolling Drum, ” Chemical Engineering Research and Design, 78 (2000) 643-650.
[15] A. Ingram, J. P. K. Seville, D. J. Parker, X. Fan and R. G. Forster, “Axial and radial dis-persion in rolling mode rotating drums,” Powder Technology, 158 (2005) 76-91.
[16] A. Džiugys and B. Peters, “An approach to simulate the motion of spherical
and non-spherical fuel particles in combustion chambers,” Granular Matter, 3 (2001) 231-266.
[17] G. Lu, J. R. Third and C. R. Müller, “Effect of wall rougheners on cross-sectional flow characteristics for non-spherical particles in a horizontal rotating cylinder,” Particuology, 12 (2014) 44-53.
[18] D. Höhner , S. Wirtz and V. Scherer, “A study on the influence of particle shape and shape approximation on particle mechanics in a rotating drum using the discrete element method,” Powder Technology, 253 (2014) 256-265.
[19] Itasca Consulting Group Inc., PFC3D—Particle Flow Code in three Dimensions,
Minneapolis, USA, 2010.
[20] J. F. Favier, M. H. Abbaspour-Fard, M. Kremmer and A. O. Raji, “Shape representation of axisymmetrical non-spherical particles in discrete element simulation using mul-ti-element model particles,” Engineering Computations, Vol. 16, pp. 467-480, 1999.
[21] H. M. Jaeger, S. R. Nagel, and R. P. Behringer, “Granular solids, liquids, and gases,” re-views of modern physics, 68 (1996) 1259-1273,.
[22] Matweb, Chi Mei Polylac○R PA-707 ABS, http://www.matweb.com/, accessed on April 25, 2013.
[23] P. A. Cundall and O. D. L. Strack, “Discrete numerical-model for granular assemblies,”
Geotechnique, 29 (1979) 47-65.
[24] J. L. Meriam, L. G. Kraige, Engineering Mechanics—Dynamics, John Wiley & Sons,
New York, USA, 2003.
[25] Y. C. Chung , H. H. Liao and S. S. Hsiau, “Convection behavior of non-spherical parti-cles in a vibrating bed: Discrete element modeling and experimental validation,” Powder Technology, 237 (2013) 53-66.
[26] Y. Tsuji, T. Tanaka and T. Ishida, “Lagrangian numerical-simulation of plug flow of co-hesionless particles in a horizontal pipe,” Powder Technology, 71 (1992) 239-250.
[27] K. L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, UK, 1985.
[28] C. O′Sullivan and J. D. Bray, “Selecting a suitable time step for discrete element simula-tions that use the central difference time integration scheme,” Engineering Computations, 21 (2004) 278-303.
[29] R. Y. Yang, R. P. Zou and A. B. Yu, “Microdynamic analysis of particle flow in a hori-zontal rotating drum,” Powder Technology, 130 (2003) 138-146.
[30] Y. C. Chung, J. Y. Ooi, Benchmark tests for verifying discrete element modelling codes at particle impact level,” Granular Matter, 13 (2011) 643-656.
[31] Y. C. Zhou, B. H Xu, A. B. YU, P. Zulli, “An experimental and numerical study of the angle of repose of coarse spheres,” Powder Technology, 125 (2002) 45-54.
[32] J. Mellmann, E. Specht and X. Y. Liu, “Prediction of Rolling Bed Motion in Rotating Cylinders,” AIChe Jouranl, 50 (2004) 2783-2793.
[33] R. Y. Yang, A. B. Yu, L. McElroy and J. Bao, “Numerical simulation of particle dynamics in different flow regimes in a rotating drum,” Powder Technology, 188 (2008) 170-177.
[34] T. S. Komatsu, S. Inagaki, N. Nakagawa and S. Nasuno, “Creep motion in a granular pile exhibiting steady surface flow,” Physical Review Letters, 86 (2001) 1757-1760.
[35] H. T. Chou, C. F. Lee, Y. C. Chung and S. S. Hsiau, “Discrete element modelling and experimental validation for the falling process of dry granular steps,” Powder Technology, 231 (2012) 122-134.
[36] N. A. Pohlman, B. L. Severson, J. M. Ottino and R. M. Lueptow, “Surface roughness effects in granular matter: Influence on angle of repose and the absence of segregation ,” Physical Review E, 73 (2006) 031304.
指導教授 鍾雲吉(Yun-Chi Chung) 審核日期 2015-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明