博碩士論文 102323008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:35.172.150.239
姓名 蘇耿民(Keng-min Su)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以有限元素法及反應曲面法分析傘型齒輪之旋轉鍛造加工問題
相關論文
★ 中尺寸LED背光模組之實驗研究★ 利用有限元素法與反應曲面法探討 金屬成型問題之最佳化設計-行星路徑旋轉鍛造傘齒輪為例
★ 以反應曲面法進行行動電話卡勾之最佳化設計★ 以微分式內涵塑性理論分析材料受軸向循環負載之塑性行為
★ A1070在累進式背擠製下的機械性質與微結構之研究★ 超音波輔助沖壓加工之應用-剪切、引伸與等通彎角擠製
★ 應用多體動力學於具循環氣體負載之迴轉式壓縮機振動預測模型建立★ 以有限元素法與反應曲面法分析螺旋傘齒輪之旋轉鍛造最佳化設計
★ 超音波振動輔助鋁合金6061及低碳鋼S15C拉伸試驗之研究★ 旋轉鍛造螺旋齒輪製程分析
★ 等通道扭轉彎角擠製之有限元素法及反應曲面法分析★ 以有限元素法與反應曲面法分析增量式板金成形
★ 以有限元素法與反應曲面法分析螺旋傘齒輪之雙錐輥旋轉鍛造最佳化設計★ 引伸成形加工問題之有限元素分析
★ 應用流函數法分析軸對稱熱擠製加工問題★ 非對稱壓延加工問題之有限元素法分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文透過有限元素軟體Deform-3D進行旋轉鍛造傘形齒輪模擬分析,以其獲得下模穴填充率及軸向成形力峰值為最佳之參數條件。本文之設計參數包含對稱圓錐形胚料預成形之參數設計及旋轉鍛造加工製程參數等六個因子。胚料預成形設計參數包含體積V、胚料兩端面的直徑D_1以及胚料中間的直徑D_2;旋轉鍛造加工製程參數包含下模每轉進給率S、上下模具間距c、上模具傾斜角γ。實驗設計採用適合建構二階反應曲面之Box-Behnken 6因子3水準的設計建立共49組模擬,使用統計軟體Minitab依Deform-3D有限元素分析的結果進行回歸分析,以建立旋轉鍛造成形力及下模穴填充率的預測模型(即反應曲面),進而探討各因子對旋轉鍛造成形力及下模穴填充率的影響以及最佳設計參數之水準。本文所建立的旋轉鍛成形力及填充率預測方程式與有限元素模擬的結果進行驗證,其結果證明預測模型具有相當的準確度。
摘要(英) In this study, an ideal FE model of cold rotary forging of a spur bevel gear is developed under the Deform-3D software. By this model, the main propose of this paper which is getting the optimum peak force value and filling rate could be found.
To achieve the purpose above mentioned, the surface response methodology based on the Box-Behnken design of experiments with six factors will be employed to plan all simulation. There are six factors in the design, including the work-piece geometry with piece volume V, up and down diameter D_(1 ), and center diameter D_2 and the process parameter with feed amount of per revolution S, the distance of the upper and lower die c ,and inclination angle of the upper die γ. Use the Minitab software to do the regression analysis and develop the predicted equations. By doing so, it’s excepted using the FEM model and surface response methodology to find the optimum design of the peak force value and filling rate.
關鍵字(中) ★ 旋轉鍛造
★ 有限元素法
★ 反應曲面法
★ 傘齒輪
關鍵字(英) ★ cold rotary forging
★ FEM
★ RSM
★ spur bevel gear
論文目次 摘要 i
Absttract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xii
第一章 序論 1
1-1前言 1
1-2文獻回顧 3
1-2-1 圓柱及圓環旋轉鍛造鍛粗加工 4
1-2-2 傘形齒輪旋轉鍛造加工 8
1-3研究動機、目的與方法 10
第二章 旋轉鍛造分析 13
2-1旋轉鍛造運動分析 13
2-2成型原理 20
2-3傘齒輪模具之建立 22
第三章 有限元素分析與實驗設計法 25
3-1有限元素模擬 25
3-1-1有限元素分析基本理論 25
3-1-2有限元素法之力學模式及數值分析 26
3-2 Deform-3D有限元素軟體[35] 27
3-2-1軟體簡介 27
3-3模擬參數設定 31
3-3-1有限元素法之力學模式及數值分析 31
3-3-2材料性質 35
3-3-3旋轉鍛造加工參數 36
3-4實驗設計法 41
3-4-1反應曲面法(Response Surface Methodology,RSM) 41
3-4-2迴歸分析基本理論 43
第四章 結果與討論 47
4-1模擬驗證 47
4-2迴歸分析與檢驗 52
4-2-1旋轉鍛造軸向成形力 52
4-2-2模穴填充率 53
4-2-3傘齒輪旋轉鍛造迴歸分析 57
4-3因子交互作用對最大成形力之效應 70
4-3-1 胚料體積(V)與上模具傾斜角(γ)對成形力的效應 71
4-3-2下模具每轉進給率S與上模具傾斜角γ對成形力的效應 72
4-3-3上下模具間距(c)與上模具傾斜角(γ)對成形力的效應 74
4-4因子交互作用對填充率之效應 76
4-4-1胚料體積(V)與胚料上端面直徑(D_1)對填充率之效應 76
4-4-2胚料體積(V)與下模每轉進給率(S)對填充率之效應 78
4-4-3胚料體積(V)與上下模具間距(c)對填充率的效應 80
4-4-4上下模具間距(c)與上模具傾斜角(γ)對填充率的效應 81
4-5對稱圓錐形胚料幾何特徵對模穴填充率之影響 83
4-6 幾何特徵對應變分佈之影響 90
4-7幾何特徵對應力分佈之影響 92
4-8品質特性最佳化 93
第五章 結論與建議 95
5-1結論 95
5-2建議 96
參考文獻 97
參考文獻 [1] Samołyk, G., 2013, “Investigation of the cold orbital forging process of an AlMgSi alloy bevel gear”, Journal of Materials Processing Technology, Vol.213, No.10, pp. 1692-1702.
[2] Slick, E, E., 1918, “The Slick Wheel Mill”, The Iron Age, Vol.102, No.9, pp.491-498
[3] Shivpuri, R., 1988, “Past developments and future trends in the rotary or orbital forging process”, Journal of Materials Shaping Technology, Vol.6, No.1, pp. 55-71.
[4] Marciniak, Z., 1970, “A rocking-die technique for cold-forming operations”, Machinery and Production Engineering, Vol.117, pp. 792-797.
[5] Slater, R.A.C., and Appleton, E., 1970, “Some experiments with model materials to simulate the rotary forging of hot steels”, Machine Tool Design Research Conf., Binningham, U.K., pp. 1117-1136.
[6] Standring, P. M., and Appleton, E., 1980, “Rotary forging developments in Japan, Part 1, Machine development and forging research”, Journal of Mechanical Working Technology, Vol.3, No.3, pp. 253-273.
[7] Schey, J. A., Venner, T. R., and Takomana, S. L., 1982, “Shape changes in the upsetting of slender cylinders”, Journal of Engineering for Industry, Vol.104, No.1, pp. 79-83.
[8] Zhang, M., 1984, “Calculating force and energy during rotating forging”, In 3 rd International Conference on Rotary Metalworking Processes(ROMP 3), pp. 115-124.
[9] Oudin, J., Ravalard, Y., Verwaerde, G., and Gelin, J. C., 1985, “Force, torque and plastic flow analysis in rotary upsetting of ring shaped billets”, International journal of mechanical sciences, Vol.27, No.11, pp. 761-780.
[10] Decheng, Z., Shijian, Y., Wang, Z. R., and Zhenrui, X., 1992, “Defects caused in forming process of rotary forged parts and their preventive methods”, Journal of Materials Processing Technology, Vol.32, No.1, pp. 471-479.
[11] Guangchun, W., Kemin, X., and Yan, L., 1997, “Methods of dealing with some problems in analyzing rotary forging with the FEM and initial application to a ring workpiece”, Journal of materials processing technology, Vol.71, No.2, pp. 299-304.
[12] Choi, S., Na, K. H., and Kim, J. H., 1997, “Upper-bound analysis of the rotary forging of a cylindrical billet”, Journal of Materials Processing Technology, Vol.67, No.1, pp. 78-82.
[13] Oh, H. K., and Choi, S., 1997, “A study on center thinning in the rotary forging of a circular plate”, Journal of materials processing technology, Vol.66, No.1, pp. 101-106.
[14] Liu, G., Yuan, S. J., Wang, Z. R., and Xie, T., 2000, “Finite element model and simulation of rotary forging of a disc”, ACTA Metallurgica Sinica (English Letters), Vol.13, No.2, pp. 470-475.
[15] Guangchun, W., and Guoqun, Z., 2002, “Simulation and analysis of rotary forging a ring workpiece using finite element method”, Finite elements in analysis and design, Vol.38, No.12, pp. 1151-1164.
[16] Liu, G., Yuan, S. J., Wang, Z. R., and Zhou, D. C., 2004, “Explanation of the mushroom effect in the rotary forging of a cylinder”, Journal of materials processing technology, Vol.151, No.1, pp. 178-182.
[17] Montoya, I., Santos, M. T., Pérez, I., González, B., and Puigjaner, J. F., 2008, “Kinematic and sensitivity analysis of rotary forging process by means of a simulation model”, International Journal of Material Forming, Vol.1, No.1, pp. 383-386.
[18] Han, X., and Hua, L, 2009, “Comparison between cold rotary forging and conventional forging”, Journal of mechanical science and technology, Vol.23, No.10, pp. 2668-2678.
[19] Hua, L., and Han, X., 2009, “3D FE modeling simulation of cold rotary forging of a cylinder workpiece”, Materials & Design, Vol.30, No.6, pp. 2133-2142.
[20] Han, X., and Hua, L., 2009, “Effect of size of the cylindrical workpiece on the cold rotary-forging process”, Materials & Design, Vol.30, No.8, pp. 2802-2812.
[21] Han, X., and Hua, L., 2009, “3D FE modeling of cold rotary forging of a ring workpiece”, Journal of Materials Processing Technology, Vol.209, No.12-13, pp. 5353–5362.
[22] Han, X., and Hua, L., 2012, “Friction behaviors in cold rotary forging of 20CrMnTi alloy”, Tribology International, Vol.55, pp. 29-39.
[23] Han, X., and Hua, L., 2012, “3D FE modelling of contact pressure response in cold rotary forging”, Tribology International, Vol.57, pp. 115–123.
[24] Wang, H., Sun S., Xia, J., and Zhang, M., 2005, “3D Finite Element Simulation of Rotary Forging in Spiral Bevel Driven Gear”, China Metalforming Equipment & Manufacturing Technology, Vol.40, No.3, pp. 93-96.
[25] Hu, R., Cheng, P. Y., Hua, L., Lu, Z. G., and Lan, J., 2007, “Influence of Processing Parameter on Stress and Failure Form of Rotary Roll Cavity Die for Straight Tooth Bevel Gear”, Hot Working Technology, Vol.36, No.1, pp. 38-41.
[26] Cheng, P. Y., Hu, R., Lu, Z, Guo., and Hwa, L., 2008, “3D numerical simulation of rotary forging for bevel gear blank”, China Metalforming Equipment & Manufacturing Technology, Vol.40, No.3, pp. 93-96.
[27] 何明祥,2008,”斜齒輪溫間擺輾鍛造模具最佳化設計與壽命預估之研究”,碩士論文,國立高雄應用科技大學。
[28] Li, Y., Wang H., Wang, X., and Zhu, C., 2009, “Study on rotary forging process of spiral bevel gear”, Forging & Stamping Technology, Vol.34, No.6, pp. 24-27.
[29] Li, Y., Wang, H., Wang, X., and Zhu, C., 2009, “Fracture of Concave Die for Spiral Bevel Gear in the Rotary Forging Process”, China Metal Forming Equipment & Manufacturing Technology, Vol.44, No.4, pp. 89-92.
[30] Deng, X., Hua, L., Han, X., and Song, Y., 2011, “Numerical and experimental investigation of cold rotary forging of a 20CrMnTi alloy spur bevel gear”, Materials & Design, Vol.32, No.3, pp. 1376-1389.
[31] Deng, X. B., Hua, L., and Han, X. H., 2011, “Three-dimensional FE modelling simulation of cold rotary forging of spiral bevel gear”, Ironmaking & Steelmaking, Vol.38, No.2, pp. 101-111.
[32] Yang, M. X., and Ren, Z. Y., 2012, “Research on the technology of cold precision orbital forming for semi-axle-bevel gear”, Machinery, Vol.39, No.2, pp. 56-60.
[33] 蕭至祥,2014,”傘形齒輪旋轉鍛造製程有限元素分析”,碩士論文,國立中央大學。
[34] 葉怡成,2001年6月,”製程與產品最佳化”,五南出版社。
[35] DEFORM-3D Version 6.1(sp1) User’s Manual,2007.
指導教授 葉維磬(Wei-ching Yeh) 審核日期 2015-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明