博碩士論文 102323019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:149 、訪客IP:52.14.130.13
姓名 杜方傑(Fang-Chieh Tu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 組織工程用冷凍成型製造系統 之自動化製作流程開發
(Development of Automatic Process to Frozen-Form Fabrication System for Tissue Engineering)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 雙光子聚合微製造技術之三維結構 製造品質改進研究★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進
★ 自動相機校正與二維影像輪廓萃取研究★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究
★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合
★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究
★ 聚醚醚酮之積層製造系統開發★ 基於雙光子聚合技術之長軸成形法製造高深寬比結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 組織工程的目的在於使用人造生物支架的方法解決人體組織移植和修復等問題。近年來隨著積層製造技術的普及,有越來越多人使用積層製造技術製作生物支架。本研究的目的即在於發展出一套生物支架用積層製造系統,並利用本研究所發展的系統製作出高品質的生物支架。
本研究基於冷凍成型製造技術發展出一套自動化支架製作系統。有別於傳統積層製造機台使用三軸運動模組,本系統使用機械手臂、Z軸升降平台做為運動模組,並加上低溫溫度控制模組以及點膠模組。本研究利用C#程式語言發展出一套可整合上述模組的主控程式。此程式包含一個簡潔的使用者介面,讓使用者可監控系統內各個硬體設備。本研究亦發展了一套自動化的支架製作流程,此自動化流程包含特殊設計的控制參數及改良過的路徑演算法,可以修正機械手臂的特性。使用者僅需輸入參數即可製作出高品質的支架。
最後本研究以實驗來驗證上述控制參數和路徑演算法為實際可行,而且可以修正機械手臂的特性,進而提升支架的品質。
摘要(英) The purpose of tissue engineering is to repair or to replace human tissue by artificial scaffolds. In recent years, additive manufacturing technique has become popular. More and more researchers attempt to fabricate scaffolds by using such techniques. This study aimed to develop a novel additive manufacturing system for fabricating high quality bio-scaffolds.
In this study, an automatic bio-scaffolds manufacturing system based on frozen form fabrication technique was developed. Unlike conventional additive manufacturing system, the proposed system used a SCARA and a Z axis stage instead of 3 axis stage as its motion module. The system also contains a low-temperature control module and a dispensing module. A control program integrated the above modules based on C# programing language and an automatic process for bio-scaffolds fabrication were also developed. The control program consisted of a user interface, which enabled users to monitor equipment of the system. The automatic process consisted of carefully designed parameters and modified tool path algorithms, which can modify the motion of the SCARA. Users can fabricate bio-scaffolds by input parameters into the interface.
Finally, this study has conducted several experiments to verify the feasibility of above parameters and algorithms. Proving they can modify motions of the robotic arm, and can enhance the quality of bio-scaffolds.
關鍵字(中) ★ 組織工程
★ 生物支架
★ 積層製造
關鍵字(英) ★ tissue engineering
★ bio-scaffold
★ additive manufacturing
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 V
表目錄 VII
第一章 緒論 1
1-1前言 1
1-2 文獻回顧 2
1-3研究動機與目的 7
1-4論文架構 8
第二章 研究與理論說明 9
2-1組織工程簡介 9
2-2 積層製造技術簡介 10
2-3 冷凍成型製造 16
第三章 系統架構與研究方法 18
3-1 系統設備簡介 18
3-2 軟體與硬體設備整合 24
3-3 自動化製作流程與使用者介面 29
3-4 製作參數設計 37
3-5 路徑演算法 42
第四章 實驗結果與討論 46
4-1 方形支架品質改善策略 46
4-2 圓形支架品質改善策略 51
4-3 機械手臂速度曲線分析 55
第五章 結論與未來展望 60
5-1 結論 60
5-2 未來展望 60
參考文獻 62
參考文獻 [1] 財團法人器官捐贈移植登錄中心:一O三年度器官捐贈人數統計表 2015年3月5日,取自http://www.torsc.org.tw/transplant/transplant_01.jsp#
[2] K. Rezwana, Q.Z. Chen, J. J. Blaker, and A. R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering” Biomaterials, Vol. 27, pp. 3413-3431, 2002.
[3] R. P. Lanza, R. Langer, and J. Vacanti, Principles of Tissue Engineering, 2nd Edition, Academic Press, pp. 251-261, 2000.
[4] D. W. Hutmacher, T. Schantz, I. Zein, K. W. Ng, S. H. Teoh, and K. C. Tan, “Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling” Journal of Biomedical Materials Research, Vol. 55, pp. 203-216, 2001.
[5] T. H. Ang, F. S. A. Sultana, D.W. Hutmacher, Y. S. Wong, J. Y. H. Fuh,
X. M. Mob, H. T. Loh, E. Burdet, and S. H. Teoh, “Fabrication of 3D chitosan–hydroxyapatite scaffolds using a robotic dispensing system” Materials Science and Engineering C, Vol. 20, pp. 35-42, 2002.
[6] C. X. Lam, X. M. Moa, S. H. Teoh, and D. W. Hutmacher, “Scaffold development using 3D printing with a starch-based polymer” Materials Science and Engineering C, Vol. 20, pp. 49-56, 2002.
[7] I. Zein, D. W. Hutmacher, K. C. Tan, and S. H. Teoh, “Fused deposition modeling of novel scaffold architectures for tissue engineering applications” Biomaterials, Vol. 23, pp. 1169-1185, 2002.
[8] R. Landers, and R. Mulhaupt, “Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers” Macromolecular Materials and Engineering, Vol. 282, pp. 17-21, 2000.
[9] R. Landers, U. Hubner, R. Schmelzeisen, and R. Mulhaupt, “Rapid prototyping of scaffolds derived from thermos reversible hydrogels and tailored for applications in tissue engineering” Biomaterials, Vol. 23, pp. 4437-4447, 2002.
[10] Z. Xiong , Y. Yan, S. Wang, R. Zhang, and C. Zhang, “Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition” Scripta Materialia, Vol. 46, pp. 771-776, 2002.
[11] L. Liu, Z. Xiong, Y. Yan, R. Zhang, X. Wang, and L. Jin, “Multinozzle Low-Temperature Deposition System for Construction of Gradient Tissue Engineering Scaffolds” Journal of Biomedical Materials Research Part B: Applied Biomaterials,
Vol. 88, pp. 254-263, 2009.
[12] C. B. Pham, K. F. Leong, T. C. Lim and K. S. Chian, “Rapid freeze prototyping technique in bio-plotters for tissue scaffold fabrication” Rapid Prototyping Journal,
Vol. 14, pp. 246-253, 2008.
[13] Y. Nishiyama, and M. Nakamura, “Development of a Three-Dimensional Bioprinter: Construction of Cell Supporting Structures Using Hydrogel and State-Of-The-Art Inkjet Technology” Journal of Biomechanical Engineering, Vol. 131, 035001, 2009.
[14] C. Heller, M. Schwentenwein, G. Russmueller, F. Varga, J. Stampfl, and R. Liska “Vinyl Esters: Low Cytotoxicity Monomers for the Fabrication of Biocompatible 3D Scaffolds by Lithography Based Additive Manufacturing” Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 47, pp. 6941-6954, 2009.
[15] K. C. Kolan, M. C. Leu, G. E. Hilmas, R. F. Brown, and M. Velez, “Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering” Biofabrication, Vol. 3, 025004, 2011.
[16] I. T. Ozbolat, H. Chen, and Y. Yu ”Development of ‘Multi-arm Bioprinter’ for hybrid biofabrication of tissue engineering constructs” Robotics and Computer-Integrated Manufacturing, Vol. 30, pp. 295–304, 2014.
[17] T. Billiet, M. Vandenhaute, J. Schelfhout, S. V. Vlierberghe, and P. Dubruel “A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering” Biomaterials, Vol. 33, pp. 6020–6041, 2012.
[18] J. A. Nielsen, V. Kasperchik, and L. Kramer, ” Materials and methods for freeform fabrication of solid three-dimensional objects using fusible, water-containing support materials” US Patent 7 255 825 B2, Aug. 14, 2007.
[19] W. Zhang, M. C. Leu, Z. Ji, and Y. Yan, “Method and apparatus for rapid freeezing prototyping” US Patent 6 253 116 B1, Jun. 26, 2001.
[20] K. S. Chian, F. K. Leong, and T. C. Lim, “Manufacturing three-dimensional scaffolds using cryogenic prototyping” US Patent 8 557 163 B2, Oct. 15, 2013.
[21] 李鑫、邵茂官、張冰,「快速成型與製造技術發展現狀與趨勢」,北京化工大學技術文章,2008。
[22] F. P. Melchelsa, M. A. Domingosc, T. J. Kleina, J. Malda, P. J. Bartolo, and D. W. Hutmacher, “Additive manufacturing of tissues and organs” Progress in Polymer Science, Vol. 37, pp. 1079-1104, 2012.
[23] L. Liu, Z. Xiong, Y. Yan, Y. Hu, R. Zhang, and S. Wang, “Porous morphology, porosity, mechanical properties of poly(a-hydroxy acid)–tricalcium phosphate composite scaffolds fabricated by low-temperature deposition” Journal of Biomedical Materials Research, Vol. 82, pp. 618-629, 2007.
[24] K. C. Hung, C. S. Tseng, and S. H. Hsu, “Synthesis and 3D Printing of Biodegradable Polyurethane Elastomer by a Water-based Process for Cartilage Tissue Engineering Applications” Advanced Healthcare Materials, Vol. 3, pp. 1578-1587, 2014.
指導教授 廖昭仰 審核日期 2015-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明