博碩士論文 102323025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:44.200.40.195
姓名 楊騎福(Chi-fu YANG)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以微波對多孔矽做消除晶格缺陷之相關研究
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
★ 以氫離子擴散機制製作單晶矽薄膜在石英上之研究★ 矽單晶轉移薄膜層表面埃級平滑化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本研究目標為將P型矽晶材料以電化學蝕刻做出多孔矽薄膜層,製作出適用於太陽能電池抗反射層之材料。目前在太陽能電池製造中,基板種類可分為單晶矽、多晶矽以及非晶矽,其中更以單晶矽的轉換效率最佳,在實驗過程中嘗試以微波處理來消除孔隙缺陷使多孔矽表面形成一層緻密的單晶多孔矽層。因傳統爐管加熱溫度過高且所耗費時間較長,故本實驗施以微波照射使其表面產生晶體重整後,藉由儀器檢測比較不同微波時間造成的表面多孔結構的差異。蝕刻時的參數包含時間、濃度、電流、光照以及熱處理時的溫度、時間、環境氣氛皆為固定,而以微波照射時間參數不同製作出之多孔矽材料,先藉由SEM觀察其表面結構變化,再利用X光繞射分析去檢測不同微波時間下晶體結晶的方向,以利往後依需求不同而選取適合的時間參數。
摘要(英) Abstract

The goal of this research is by using electrochemical etching to produce ultra-thin porous silicon layer. The layer can be used in the anti-reflection layer in the solar cell system. In the solar cell industry, the substrate can be divided to three different parts, which are single-crystal silicon, poly-silicon, and amorphous-silicon. The efficiency of the single-crystal silicon is the highest one. Therefore, we tried to use microwave (MW) technology to eliminate the defects of the porous-silicon. In this way, we can obtain a compact single-crystal silicon layer on the surface.
The traditional way to recrystallization the layer should be process in high temperature above 1050 degree. Besides, it takes too much time and energy to do so. Therefore, in this experiment, we choose microwave to replace the traditional process, which can improve the quality of the layers and reduce the cost. After different periods of microwave process, we used SEM to observe the structure of the samples. Furthermore, X-ray diffraction results can show us the quality of the crystallization.
關鍵字(中) ★ 多孔矽
★ 微波
關鍵字(英) ★ microwave
★ porous silicon
論文目次 目錄
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 3
第二章 原理與文獻回顧 9
2.1 多孔矽形成基礎理論 9
2.2 多孔矽製作方式比較 10
2.3 多孔矽溶解的化學反應 12
2.4 多孔矽的形成機制 14
2.4.1 貝爾模型[9,10] (The Beale Model) 14
2.4.2 量子模型[11-13] (The Quantum Model) 15
2.4.3 擴散限制模型[14-17] (The Diffusion-Limited Model) 15
2.5 多孔矽的側向蝕刻 16
2.6 多孔矽的高溫退火 17
第三章 微波化學 23
3.1 微波簡介 23
3.2 微波與材料間的相互反應 24
3.3 微波熱力特性 27
3.3.1 材料的介電性質 27
3.3.2 微波與傳統加熱之比較 28
第四章 實驗方法與步驟 36
4.1 實驗流程 36
4.2 實驗晶片清潔 37
4.3 電化學蝕刻設備 39
4.4 微波設備 40
第五章 結果與討論 46
5.1 多孔矽層經過微波照射後之前後變化 47
5.2 不同微波時間照射產生之表面結構變化(SEM) 48
5.3 不同微波時間照射產生之橫截面結構變化(SEM) 48
5.4 X光繞射分析 (XRD) 49
第六章 結論 60
參考文獻 62


參考文獻 參考文獻
[1] Moore, Sally Falk. Law as process: an anthropological approach. LIT Verlag Münster, 2000.
[2] Celler, G. K., and Sorin Cristoloveanu. "Frontiers of silicon-on-insulator."Journal of Applied Physics 93.9 (2003): 4955-4978.
[3] 莊達人, and 電子工程. VLSI 製造技術. 高立出版, 2003.
[4] 電漿離子佈植製作 SOI 及佈植缺陷之研究. 2008.
[5] Kuo, James B., and Ker-Wei Su. CMOS VLSI engineering: silicon-on-insulator (SOI). Springer Science & Business Media, 2013.
[6] Colinge, J-P. Silicon-on-Insulator Technology: Materials to VLSI: Materials to Vlsi. Springer Science & Business Media, 2004.
[7] Lasky, J. B., et al. "Silicon-on-insulator (SOI) by bonding and etch-back."Electron Devices Meeting, 1985 International. Vol. 31. IEEE, 1985.
[8] Tong, Q-Y., and Ulrich Goesele. Semiconductor wafer bonding: science and technology. John Wiley, 1999.
[9] Bruel, Michel. "Process for the production of thin semiconductor material films." U.S. Patent No. 5,374,564. 20 Dec. 1994.
[10] Srikrishnan, Kris V. "Smart-cut process for the production of thin semiconductor material films." U.S. Patent No. 5,882,987. 16 Mar. 1999.
[11] Karmakar, Rana. "Quantum Dots and it method of preparations-revisited."PRAJNAN O SADHONA–A SCIENCE ANNUAL (2015): 116.
[12] Yonehara, Takao, and Kiyofumi Sakaguchi. "Eltran®, Novel SOI Wafer Technology." JSAP International 4 (2001): 10-16.
[13] Uhlir, A. "Electrolytic shaping of germanium and silicon." Bell System Technical Journal 35.2 (1956): 333-347.
[14] Osaka, Tetsuya, Kako Ogasawara, and Shohei Nakahara. "Classification of the Pore Structure of n‐Type Silicon and Its Microstructure." Journal of The Electrochemical Society 144.9 (1997): 3226-3237.
[15] Lehmann, V., and S. Ronnebeck. "The Physics of Macropore Formation in Low‐Doped p‐Type Silicon." Journal of The Electrochemical Society 146.8 (1999): 2968-2975.
[16] Beale, M. I. J., et al. "An experimental and theoretical study of the formation and microstructure of porous silicon." Journal of Crystal Growth 73.3 (1985): 622-636.
[17] Beale, M. I. J., et al. "Microstructure and formation mechanism of porous silicon." Applied Physics Letters 46.1 (1985): 86-88.
[18] Read, A. J., et al. "First-principles calculations of the electronic properties of silicon quantum wires." Physical review letters 69.8 (1992): 1232.
[19] Sanders, G. D., and Yia-Chung Chang. "Theory of optical properties of quantum wires in porous silicon." Physical Review B 45.16 (1992): 9202.
[20] Lehmann, V., and Ulrich Gösele. "Porous silicon formation: a quantum wire effect." Applied Physics Letters 58.8 (1991): 856-858.
[21] Smith, R. L., S-F. Chuang, and S. D. Collins. "A theoretical model of the formation morphologies of porous silicon." Journal of Electronic Materials 17.6 (1988): 533-541.
[22] Witten, Thomas A., and Leonard M. Sander. "Diffusion-limited aggregation."Physical Review B 27.9 (1983): 5686.
[23] Solanki, C. S., et al. "New approach for the formation and separation of a thin porous silicon layer." physica status solidi (a) 182.1 (2000): 97-101.
[24] Labunov, V., et al. "Heat treatment effect on porous silicon." Thin Solid Films137.1 (1986): 123-134.
[25] Müller, G., et al. "Sintering of porous silicon." physica status solidi (a) 197.1 (2003): 83-87.
[26] Reed-Hill, Robert E., and Reza Abbaschian. "Physical metallurgy principles." (1973).
[27] German, Randall M. "Sintering theory and practice." Sintering Theory and Practice, by Randall M. German, pp. 568. ISBN 0-471-05786-X. Wiley-VCH, January 1996. 1 (1996).
[28]
[29] Ott, N., et al. "Evolution of the microstructure during annealing of porous silicon multilayers." Journal of applied physics 95.2 (2004): 497-503.
[30] Welch, Arthur E. "Microwave heating apparatus and method of heating a food package." U.S. Patent No. 2,714,070. 26 Jul. 1955.
[31] Kingstone, H. M., and L. Jassie. "Introduction to microwave sample preparation." Theory and practice. American Chemical Socity Professional Reference Book, Washington DC 263 (1988).
[32] Mingos, D. Michael P., and David R. Baghurst. "Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry."Chem. Soc. Rev. 20.1 (1991): 1-47.
[33] Clark, David E., and Willard H. Sutton. "Microwave processing of materials."Annual Review of Materials Science 26.1 (1996): 299-331.
[34] 曾信富. "微波加熱處理與材料特性分析." 清華大學物理學系學位論文 (2006): 1-59.
[35] 微波加熱與微波萃取教學與實驗教材之設計. 2001.
[36] http://web.it.nctu.edu.tw/~FMPANLAB/LowK.htm
[37] 微波加熱與微波萃取教學與實驗教材之設計. 2001.

[38] Huang, Z., Q. Zhang, and R. W. Whatmore. "Low temperature crystallization of lead zirconate titanate thin films by a sol-gel method." Journal of applied physics 85.10 (1999): 7355-7361.
指導教授 李天錫 審核日期 2016-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明