博碩士論文 102323026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:3.138.102.82
姓名 謝松樺(Sung-Hua Hsieh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 Acrylonitrile-Butadiene-Styrene (ABS) 之機械性質及熱成型性研究
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要探討工程塑膠材料:丙烯腈 - 丁二烯 - 苯乙烯(Acrylonitrile-Butadiene-Styrene)(ABS)應用於製造液晶螢幕電視機後殼。使用之加工方法如下:射出成型(Injection molding)、真空熱成型(Vacuum thermoforming)等。傳統工業上,生產液晶螢幕電視機後殼是使用射出成型,然而開發射出成型於大型尺寸模具費用昂貴,所以採用另一種塑膠成型法-真空熱成型(Vacuum thermal forming),其用於製造大型尺寸產量少之產品,模具費用相對較低,在真空熱成型過程中,將ABS塑膠材料板片進行加溫軟化後,施予真空與施加壓力,而加溫過後的ABS塑膠材料於模具孔洞成型時會產生流變行為,此時的應力、溫度、應變與應變速率會間接影響ABS塑膠材料的變型趨勢。
利用標準微型電腦材料試驗機(MTS),對塑膠材料ABS進行高溫流變應力行為分析。在不同的溫度( 95-110 °C )與不同的應變速率( 1×10-3 - 5.6×10-2 s-1 )進行塑膠材料拉伸測試變化,研究應變速率與溫度對於ABS塑膠材料之機械性質的影響。同時藉由冪次法則(Power law model)與雙曲線正弦函數(Hyperbolic sine law model),可以得知應力與應變相關關係式,並探討材料的應變速率(ε ̇)、應力指數(n)、應變速率敏感指數(m)、材料常數(K、A)、熱活化能(Q)與溫度(T),進而討論其變形條件下的關係式,再由冪次法則與雙曲線正弦函數分別計算出實驗值與計算模擬值,進行組合方程式相關驗證後,比對算出誤差值進而比較。
摘要(英) This thesis focuses on ABS, which is used in TV set manufacturing with injection molding process, vacuum thermoforming etc. The cost is too high in injection molding process, so we used vacuum thermoforming. The advantage of using a thermoforming process is the cost effective molding in tackling large sized and complex shaped products such as a surfing board, a large size TV set back cover etc.
The combined effects of strain-rate, strain-hardening, and temperature on the elongation deformation behavior of ABS material at a high temperature was proposed. In the vacuum thermoforming process, there will be flow stress at the mold cavity of the ABS plastics, and stress, temperature, strain and strain rate will affect the ABS plastics deformation. The hot deformation behaviors and constitutive analysis of injection molded ABS plastics were systematically investigated by hot tensile tests in the temperature range of 95-110 °C and strain rate range of 1 x 10-3 to 5.6 x 10-2 s-1. Power law and hyperbolic sine constitutive relation was adopted and the constitutive parameters, strain rate ε ̇, stress exponent n, strain rate sensitivity exponent m, material constants (K, A), activation energy Q, and temperature T in the constitutive equations were calculated as a function of strain. By using the two functions, we can compare the calculated flow stresses and experimental ones and get average absolute relative error.
關鍵字(中) ★ 冪次法則
★ 雙曲線正弦函數
★ ABS
★ 流變應力
關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章緒論 1
1-1 前言 1
1-2 研究方法與目的 2
第二章文獻回顧 3
2-1 高分子材料機械性質測試種類 3
2-2 高分子材料塑性變形行為 4
2-3 高分子材料應力-應變曲線之理想化 4
2-3 熱分析儀原理(Differential Scanning Calorimetry, DSC) 5
2-4 組合方程式 5
2-5 相關塑膠熱成形性與機械性質研究 7
第三章實驗方法與步驟 9
3-1 實驗設備 9
3-2 實驗材料 9
3-3 實驗步驟 9
3-4 熱分析儀實驗 10
3-5 單軸拉伸實驗 10
第四章結果與討論 11
4-1 熱分析儀 11
4-2 流變行為 11
4-3 組合關係分析 12
4-3-1 冪次法則(Power law model) 12
4-3-2 雙曲線正弦函數(Hyperbolic sine law model) 12
第五章結論 18
參考文獻 19
參考文獻 [1] Mohanraj J., D. C. Barton., I.M. Ward., et al. Plastic deformation and damage of polyoxymethylene in the large strain range at elevated temperatures. J Polym. 2006; 47: 5852-5861.
[2] Nunes L.C.S., F.W.R Dias. Mechanical behavior of polytetrafluoroethylene in tensile loading under different strain rates j polymertesting.2011; 30: 791-796
[3] Richetona J., S. Ahzia., K.S. Vecchiob., F.C. Jiangb., R.R. Adharapurapu.Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress. Int J of Solild and Structures. 2006; 43: 2318-2335.
[4] Arruda E. M., M. C. Boyce., R. Jayachandran. Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers. Mecha of Materi. 1995; 19: 193-212.
[5] Rittel D., On the conversion of plastic work to heat during high strain rate deformation of glassy polymers. Mecha of Materi. 1999; 31: 131-139.
[6] Lindholm U.S., Techniques of Metals Research: Measurement of mechanical properties. Editor: R. F. Bunshah(ed.), Wiley-Interscience. 1971; 7: pp.199
[7] 林建中,「聚合物物性(高分子材料機械性質) 」1999; pp.17
[8] 林建中,「聚合物物性(高分子材料機械性質) 」1999; pp.157
[9] Ward I. M., D. W. Hadley. An Introduction to the Mechanical Properties of Solid Polymers. John Wiley & Sons. 1993; pp.221.
[10] Boyce M. C., David M. Parks., Ali S. Argon. Large Inelastic Deformation of Glassy Polymer. Part I: Rate Dependent Constitutive Model, Mech of Materi. 1988; 7: 15-33.
[11] Argon A. S., A Theory for the Low-Temperature Plastic Deformation of Glassy Polymers. phil magazine, 1973; 28: 839-865.
[12] Blom Henk., Rosa Yeh., Robert Wojnarowski., Michael Ling., Thermochimica Acta. Detection of degradation of ABS materials via DSC. 2006; 442: 64–66.
[13] 胡德,「高分子物理與機械性質(上)」 1994; pp.79-112
[14] Wang S,. Numerical simulation of acrylonitrile-butadiene-styrene material’s vacuum forming process. J of Materi Process Technol. 1999; 91(1–3): 219-225.
[15] Eyring H., Viscosity Plasticity and Diffusion as Examples of Absolute Reaction Rates. The J of Chem Phy. 1936; 4(4): 283-291.
[16] Powell RE,. W.E. Roseveare, H. Eyring. Diffusion, Thermal Conductivity, and Viscous Flow of Liquids. Ind Eng Chem. 1941; 33(4): 430-435.
[17] Fernandez A.C., G.D.J. Phillies. Temperature dependence of the diffusion coefficient of polystyrene latex spheres. Biopolym. 1983; 22(2): 593-595.
[18] Avramov I., Viscosity activation energy. Physics and Chemistry of Glasses - European Journal of Glass Science and Technology Part B 2007; 48(1): 61-63.
[19] Morioka S., M.H. Sun.Evaluation of the activation energy of viscous flow in the dense gas-like model. J Non-Cryst Solids 2009; 355(4–5): 287-294.
[20] Vrentas J.S., J.L. Duda. Diffusion in polymer–solvent systems. II. A predictive theory for the dependence of diffusion coefficients on temperature, concentration, and molecular weight. J Polym Sci Polym Phys Ed. 1977; 15(3): 417-439.
[21] Inoue T., M.T. Cicerone., M.D.Ediger. Molecular Motions and Viscoelasticity of Amorphous Polymers near Tg. Macromolecules. 1955; 28(9): 3425-3433.
[22] Cicerone M.T., F.R. Blackburn, M.D. Ediger. Anomalous Diffusion of Probe Molecules in Polystyrene: Evidence for Spatially Heterogeneous Segmental Dynamics. Macromolecules 1955; 28(24): 8224-8232.
[23] Flory P.J.,Thermodynamics of Dilute Solutions of High Polymers. J Chem Phys. 1945; 13(11): 453-465
[24] Berry G.C., T.G. Fox. The viscosity of polymers and their concentrated solutions. Fortschritte der Hochpolymeren-Forschung: Springer Berlin Heidelberg. 1968; 5: 261-357.
[25] Novak L.T., C.C.Chen, Y. Song . Segment-Based Eyring−NRTL Viscosity Model for Mixtures Containing Polymers. Ind Eng Chem Res. 2004; 43(19): 6231-6237
[26] Sadeghi R., Segment-based Eyring–Wilson viscosity model for polymer solutions. J Chem Thermodyn. 2005; 37(5): 445-448.
[27] Liao C.h., H.y Wu., S. Lee., F.j. Zhu., H.c.Liu., C.t. Wu. Strain-dependent constitutive analysis of extruded AZ61 Mg alloy under hot compression. Materi Scie and Eng: A. 2013; 565(0): 1-8.
[28] Wang S., A. Makinouchi., T. Nakagawa. Three-dimensional viscoplastic FEM simulation of a stretch blow molding process. Adv Polym Technol. 1998; 17(3): 189-202
[29] Phillips C.O., et al. Finite element modelling of low temperature forming of polymer films with application in in-mould decoration. Materi & Design. 2009; 30(3): 537-550.
[30] Jarrar F.S., et al.New approach to gas pressure profile prediction for high temperature AA5083 sheet forming. J of Materi Process Techno.2010; 210(6–7): 825-834.
[31] Taylor C.A., H.G. Delorenzi., D.O.Kazmer. Experimental and numerical investigations of the vacuum-forming process. Poly Eng Sci. 1992; 32(16): 1163-1173.
[32] Song W.N., F.A. Mirza., J. Vlachopoulos. Finite Element Simulation of Plug-assist Forming. Int J Polym Process. 1992; 7(3): 248-256.
[33] Kouba K., O.Bartos., j. Vlachopoulos. Computer simulation of thermoforming in complex shapes. Poly Eng Sci. 1992; 32(10): 699-704.
[34] O’Connor C.P.J., P.J.Martin., J. Sweeney, G. Menary., P. Caton-Rose., P. E. Spencer. Simulation of the plug-assisted thermoforming of polypropylene using a large strain thermally coupled constitutive model. J of Materi Process Technol. 2013; 213(9): 1588-1600.
[35] ASTM D638-10, Standard Test Method for Tensile Properties of Plastics, 2010.
[36] 林建中,「聚合物物性(高分子材料機械性質) 」1999; pp.117
指導教授 李雄 審核日期 2015-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明