博碩士論文 102323031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.238.190.82
姓名 葉哲宏(Che-hung Yeh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用ECR-CVD於低溫成長磊晶矽薄膜之製程參數與腔體環境研究
相關論文
★ 以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力★ 高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析
★ 局域性表面電漿效應應用於增益有機發光二極體發光強度之參數優化研究★ 最佳化設計金屬有機化學氣相沉積高溫加熱系統數值分析研究
★ 以濺鍍CIG三元靶調變硒化製程壓力製作CIGS太陽能電池之特性分析★ 最佳化OLED面型蒸鍍加熱器設計與腔體流場數值分析
★ 以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響★ 電漿診斷系統輔助化學氣相沉積之鈍化層薄膜製程區間研究
★ 以數值分析法分析氮化鎵薄膜沉膜機制之探討暨實作驗證★ 以RTP硒化法探討CIS薄膜及元件特性之研究
★ 局域性表面電漿共振效應應用於OLED出光增益之研究★ TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究
★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究★ 自製蘭牟爾探針診斷TE微波模式電子迴旋共振電漿
★ 以噴塗技術在不銹鋼基板上沉積氧化矽阻隔層應用於可撓式CIGS太陽電池之研究★ 使用電子迴旋共振化學氣相沉積製備異質接面太陽能電池表面鈍化氫化非晶矽薄膜之製程參數研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用電子迴旋共振化學氣相沉積(Electron cyclotron resonance chemical vapor deposition, ECR-CVD)於低溫製備磊晶矽薄膜, ECR-CVD屬於高密度電漿具有較快沉積速率、無電極汙染、低離子轟擊等特點。但由於ECR-CVD腔體在製程上的不穩定性,易造成實驗誤差並影響實驗結果。本實驗分析製程參數與腔體環境,找出各製程參數對薄膜結晶率與沉積速率的影響,在製程上分別改變氫稀釋比、製程壓力、微波功率、主磁場位置、基板溫度 、不同薄膜厚度、不同基板與處理方式;在腔體環境上改變腔體預鍍時間,搭配每週沉積相同參數薄膜並記錄ECR-CVD的最低壓力與清腔光譜,找出影響製程穩定性的原因與解決的方法,並藉由光放射光譜儀、橢圓儀、拉曼、X光繞射儀與穿透式電子顯微鏡來量測電漿光譜與薄膜結構特性。
如要得到穩定的製程環境,須注意腔體清潔,並藉由放射光譜儀的監控與適當時間的預鍍,使其電漿狀態穩定,且在實驗過程中注意使用的基板與處理的方式。如要沉積高結晶率的矽薄膜,必須選擇適當的氫稀釋、高的製程壓力、低的微波功率與高的基板溫度,且可以藉由放射光譜儀量測電漿中SiH*強度估算出矽薄膜的沉積速率,減少實驗所須的步驟與時間。
摘要(英) In this study, the low temperature growth epitaxy silicon (epi-Si) thin films was prepared by Electron Cyclotron Resonance Chemical Vapor Deposition (ECR-CVD). ECR-CVD had many advantages, such as faster deposition rate, no electrode contamination and low ion bombardment. However, unstable process was easy to cause experimental error. We analyzed process parameters to find out how it affects the deposition and crystal rate of the thin film. We also analyzed chamber environments to find out how it affects the process stability. The process parameters effect of epi-Si thin films such as dilution ratio, process pressure, microwave power, main magnetic field position, substrate temperature, thickness of thin film, different substrates and different way to clean the substrates were investigated. The chamber environments effect of process stability such as pre-coating time, the lowest pressure of chamber and the plasma chamber cleaning were investigated. The thin films and plasma were analyzed by optical emission spectroscopy, ellipsometer, Raman spectroscopy, X-ray diffractometer and TEM.
Finally, to keep a stable process chamber, we needed to pay attention to chamber cleaning, suitable pre-coating time, substrate type and the way of substrate cleaning. We used optical emission spectroscopy to diagnose the plasma and to made sure it is stable. The experiment results showed that appropriate dilution ratio, high process pressure, low microwave power and high substrate temperature had higher crystal rate. We used optical emission spectroscopy to measure the intensity of SiH* and calculated the epi-Si thin film deposition rate. It could save the time and steps of experiment.
關鍵字(中) ★ 矽薄膜
★ 磊晶
★ 腔體環境
★ ECR-CVD
關鍵字(英)
論文目次 目錄
摘要 VI
Abstract VII
致謝 VIII
目錄 IX
圖目錄 XII
表目錄 XVI
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究目的 3
第二章 基本理論及文獻回顧 4
2-1 薄膜沉積原理 4
2-2 矽薄膜介紹 8
2-3 低溫磊晶 12
2-4 化學氣相沉積(CVD) 13
2-4-1 電漿增強化學氣相沉積(PECVD) 14
2-4-2 電子迴旋共振氣相沉積系統(ECR-CVD)反應原理機制 15
2-5光放射光譜儀用於矽薄膜製程之研究 18
第三章 研究方法與實驗設備 20
3-1 實驗方法 20
3-2 實驗步驟 21
3-2-1 試片基板清洗 21
3-2-2 試片製作 22
3-3 實驗裝置與量測 23
3-3-1 電子迴旋共振氣相沉積系統(ECR-CVD) 23
3-3-2光放射光譜儀(OES) 26
3-3-3 橢圓偏光儀(Ellipsometer) 28
3-3-4 拉曼光譜儀(Raman Spectroscopy) 29
3-3-5高解析度X光繞射儀(XRD) 30
3-3-6穿透式電子顯微鏡(TEM) 31
第四章 實驗結果與討論 32
4-1 製程腔體環境對磊晶矽薄膜的影響 33
4-1-1 腔體預鍍時間對磊晶矽薄膜的影響 33
4-1-2 長時間腔體環境變化對磊晶矽薄膜的影響 36
4-1-2-1 2014/10/7-12/19腔體環境變化對磊晶矽薄膜的影響 36
4-1-2-2 2015/3/31-5/20腔體環境變化對磊晶矽薄膜的影響 42
4-2 氫稀釋比對磊晶矽薄膜的影響 47
4-3 製程壓力對磊晶矽薄膜的影響 50
4-4 微波功率對磊晶矽薄膜的影響 53
4-5 主磁場對磊晶矽薄膜的影響 57
4-6 基板溫度對磊晶矽薄膜的影響 60
4-7磊晶矽薄膜厚度對生長磊晶矽薄膜的影響 63
4-8 處理基板方式對不同基板上生長磊晶矽薄膜的影響 65
第五章 結論 67
參考文獻 70

參考文獻 [1]黃惠良,曾百亨,太陽電池,五南出版社,2008年12月。
[2] C.H. Chen, T.R. Yew, “Silicon epitaxial growth by plasma enhanced chemical vapor deposition from SiH4 / H2 at 165-350℃”, Journal of Crystal Growth, Vol. 147, pp. 305-312, 1995.
[3] L. Guo, M. Kondo, M. Fukawa, K. Saitho and A. Matsuda, “High rate deposition of microcrystalline silicon using conventional plasma enhanced chemical vapor deposition”, Japanese Journal of Applied Physics, Vol. 37, pp. L 1116–L 1118, 1998.
[4] S.J. DeBoer, V.L. Dalal, G. Chumanov, R. Bartel, “Low temperature epitaxial silicon film growth using high vacuum electron-cyclotron-resonance plasma deposition”, Journal of Applied Physics, Vol. 66, No. 19, pp. 25–28, 1995.
[5] Y. Fukuda, Y. Sakuma, C. Fukai, Y. Fujimura, K. Azuma, H. Shirai, “Optical emission spectroscopy study toward high rate growth of microcrystalline silicon”, Thin Solid Films, Vol. 386, pp. 256–260, 2001.
[6] M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Ch.11 Deposition, 2001.
[7] 莊達人,VLSI製造技術,高立圖書有限公司,民國85 年。
[8]J. Venables, G.D.T. Spiller and M. Hanbucken, “Nucleation and Growth of Thin films”, Reports on Progress in Physics, Vol 47, pp. 399-459, 1984.
[9] M. S. Valipa, E. S. Aydil, D. Maroudas, “Atomistic calculation of the SiH3 surface reactivity during plasma deposition of amorphous silicon thin films”, Surface Science, Vol. 572, pp. 339-347, 2004.
[10] A.V. Shah, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, U. Graf , “Material and solar cell research in microcrystalline silicon ”, Solar Energy Materials and Solar Cells, Vol 78, pp. 469-491, 2003.
[11] O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. MuK ck, B. Rech, H. Wagner, “Intrinsic microcrystalline silicon:A new material for photovoltaics”, Solar Energy Materials and Solar Cells, Vol 62, pp. 97-108, 2000.
[12] A. Matsuda, ”Growth mechanism of microcrystalline silicon obtained from reactive plasmas”, Thin Solid Films, Vol 337, pp. 1-6, 1999.
[13] C.C. Tsai, B.G. Anderson, R. Thompson, “Low temperature growth of epitaxial and amorphous silicon in a hydrogen-diluted silane plasma”, Journal of Non-Crystalline Solid, Vol. 137&138, pp. 673-976, 1991.
[14] K. Sasaki, H. Tomoda, T. Takada, “Etching action by atomic hydrogen and low temperature silicon epitaxial growth on ECR plasma CVD”, Journal of Vacuum, Vol. 51, No. 4, pp. 537-541, 1998.
[15] M. Kishner, “On the balance between silylene and silyl radicals in rf glow discharges in silane: The effect on deposition rates of a-Si:H”, Journal of Applied Physics, Vol. 62, pp. 2803-2811, 1987.
[16] Y. Ruoche and L. Kuixun, “Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio frequency glow discharge”, 1997.
[17] H. Yang, C. Wu, J. Huang, R. Ding, Y. Zhaoa, X. Genga and S. Xionga, “Optical emission spectroscopy investigation on very high frequency plasma and its glow discharge mechanism during the microcrystalline silicon deposition”, Thin Solid Films, Vol 472, pp. 125–129, 2005.
[18] P. Kumar, F. Zhu, A. Madan, “Electrical and structural properties of nano-crystalline silicon intrinsic layers for nano-crystalline silicon solar cells prepared by very high frequency plasma chemical vapor deposition”, International Journal of Hydrogen Energy, Vol 33, pp. 3938–3944, 2008.
[19] S.Y. Liena, Y.Y. Changa, Y.S. Choa, J.H. Wangb, K.W. Wenga, C.H. Chaoa and C.F. Chena, “Characterization of HF-PECVD a-Si:H thin film solar cells by using OES studies”, Journal of Non-Crystalline Solids, Vol 357, pp.161–164, 2011.
[20] Y. Fukuda, Y. Sakuma, C. Fukai, Y. Fujimura, K. Azumab and H. Shirai, “Optical emission spectroscopy study toward high rate growth of microcrystalline silicon”, Thin Solid Films, Vol. 386, pp. 256–260, 2001.
[21] H. Yang, C. Wu, J. Huang, R. Ding, Y. Zhaoa, X. Genga and S. Xionga, “Optical emission spectroscopy investigation on very high frequency plasma and its glow discharge mechanism during the microcrystalline silicon deposition”, Thin Solid Films, Vol 472, pp. 125–129, 2005.
[22] H. L. Hsiao, H. L. Hwang, A. B. Yang, L. W. Chen and T. R. Yew, “Study on low temperature facetting growth of polycrystalline silicon thin films by ECR downstream plasma CVD with different hydrogen dilution”, Applied Surface Science, Vol 142, pp. 316–321, 1999.
[23] Z. Wua, J. Sun, Q. Lei, Y. Zhao, X. Geng and J. Xi, “Analysis on pressure dependence of microcrystalline silicon by optical emission spectroscopy”, Physica E, Vol 33, pp. 125–129, 2006.
[24] P. Tristant, Z. Ding, Q. B. Trang Vinh, H. Hidalgo, J. Jauberteau, J. Desmaison, and C. Dong et al., “Microwave Plasma Enhanced CVD of Aluminum Oxide Films:OES Diagnostics and Influence of the RF Bias”, Thin Solid Films, Vol. 390, pp. 51–58, 2001.
[25] E. Campbell, M. Rosen, D. Phillion, R. Price, K. Estabrook, B. F. Lasinski, S. P. Obenschain, E. A. Mclean, R. R. Whitlock and B. H. Ripin, “Laser plasma coupling in long pulse, long scale length plasmas”, Journal of Applied Physics, Vol. 43, pp. 54-59, 1983.
[26] A. Francis, U. Czarnetzki, H. Döbele, and N. Sadeghi, “Quenching of the 750.4 nm argon actinometry line by H2 and several hydrocarbon molecules”, Journal of Applied Physics, Vol. 71, pp. 37-96, 1997.
[27] G. Jellison, F. Modine, “Parameterization of the optical functions of amorphous materials in the interband region”, Journal of Applied Physics, Vol. 69, pp. 371-378, 1996.
[28]S.Y. Huang, Q.J. Cheng, S. Xu, K. Ostrikov, “Inductively coupled plasma-assisted RF magnetron sputtering deposition of boron-doped microcrystalline Si films”, Journal of Alloys and Compounds, Vol 499, pp. 166-170, 2010.
[29] B. Demaurex, R. Bartlome, J.P. Seif, J. Geissbühler, D.T.L. Alexander, Q. Jeangros, C. Ballif, and S.D. Wolf, “Low-temperature plasma-deposited silicon epitaxial films: Growth and properties”, Journal of Applied Physics, Vol 116, pp. 1-9, 2014.
[30]明志科技大學材料工程學系網站,取自http://mse.mcut.edu.tw/ezfiles/31/1031/img/257/211208148.pdf
指導教授 利定東(Tomi T. Li) 審核日期 2015-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明