博碩士論文 102323033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.236.82.241
姓名 陳祐民(Yu-Min Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 懸空石墨烯之特性研究與應用
(Characterizations of Suspended Graphene Film and its Applications)
相關論文
★ 捲對捲乾轉印方法於製作高效能石墨烯透明導電膜之研究★ 利用氟素高分子摻雜於提升石墨烯導電膜的效能 與穩定性之研究
★ 以石墨烯混成陶瓷粉末於製作高導熱及高電阻之聚亞醯胺薄膜的研究★ 以奈米銅催化輔助控制多孔石墨烯之孔隙結構及其於超級電容之研究
★ 研究超潔淨石墨烯之場效電晶體 於提升基因感測器之效能★ 利用氟化自組裝膜輔助轉印石墨烯薄膜及其於場效電晶體特性之研究
★ 多孔石墨烯邊界態之氮改質於超級電容的效能研究★ 石墨烯場效應電晶體應用於DNA生醫感測晶片之元件整合和效能評估的研究
★ 添加氟化石墨烯於奈米高分子複合材料以增強防 腐性能★ 石墨烯功能性改質於鋰離子電池負極材料 之研究
★ 利用化學氣相沉積法於規模化合成大面積石墨烯之研究★ 電化學輔助剝離於乾轉印大面積與超潔凈石墨烯之研究
★ 利用網印方法製備全固態石墨烯複合電極於高能量密度之微型電容的研究★ 有效披覆黑磷烯的穩定性之研究
★ Phosphorus and Nitrogen Dual-doped Graphene Oxide as Metal-free Catalyst for Hydrogen Evolution Reaction★ 利用氟化自組裝膜增強石墨烯與二硫化鉬的電傳輸特性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 石墨烯為單一原子層的二維材料,具有優異的材料性質包含:高光穿透率、可彎折、高熱傳導、電傳導等性質,近年來石墨烯的相關研究發展相當快速,但大多數元件都需基板支撐,當石墨烯薄膜被基板支撐時,基板會參與石墨烯的聲子、電子等粒子的傳遞,導致無法呈現本質石墨烯性質,因此石墨烯懸空便成為實現常溫下超高速元件的一個選擇;但目前單層石墨烯以背向漂浮法能懸空的尺度為直徑500μm,製程複雜不穩定且容易於附著高分子殘留物。本研究主要發展一種簡易且可靠的方法來研製大面積的懸空石墨烯。首先,將銅箔基板藉由電化學拋光後,以常壓化學氣相沉積法進行成長,改變氫氣流量得到高品質單層石墨烯薄膜,其製程優化之單晶高品質石墨烯的晶粒可達~50μm。第二部分將單層石墨烯堆疊五層並以熱裂解法進行轉印,得到最大尺度可達1,500μm石的懸空墨烯薄膜,成功懸空的比率皆較背向漂浮法提高200%,且能排除高分子殘餘物的影響,氧化基團鍵結分別下降4~6%不等,載子遷移率提高154%。此外,本研究也演示了電容式壓力感測器的應用,結果顯示電容值與壓力變化具有良好的線性趨勢,而其感測之靈敏度為15.15aF/Pa,相對於矽基材料提升達七倍(~770%),基於此種懸空結構的製程,在未來將可望應用於微機電和生醫感測器、高頻電子元件等廣泛的應用。
摘要(英) Graphene is a one atom thickness 2D material that shows remarkable material properties, including high optical transparency, mechanical flexibility, high thermal conductivity, and superior high conductivity. In the last decade, graphene research and its related applications have been attracted intensive attentions. However, the earlier research on graphene device were performed on substrate. The substrate induced carrier scattering, charge impurity doping and corrugation that drastically degrade the intrinsic properties of graphene. Thus the suspended graphene shows superior intrinsic material properties on carrier transport, thermal conductivity and mechanical elasticity. Especially the practical application in ultra-high speed device. Before this study, the suspended graphene membrane made by the inverted floating method can yield the large size about 500μm in diameter; however, the suspended graphene by this approach were suffered from issues of the difficulty for manipulation and complicated process as well as the large amounts of polymer residue on graphene. This study was to develop a simple and reliable route to achieve a large area of suspended graphene. The proposed process including (1) the optimization of graphene growth conditions by atmospheric pressure chemical vapor deposition (APCVD) and (2) the transferring process for suspended graphene by solvent replacing and thermal decomposition method. It was found out that the optimized graphene single crystalline size with high quality could be up to ~50μm. The results shows that the largest suspended graphene membrane over 1,500μm in diameter can be obtained by stacking and transferring 5-layered graphene on a holy substrate. The XPS characterization shows that the extremely low oxygen functional groups of 4~6% on graphene membrane after thermal annealing can be achieved, suggesting the ultra-clean and high quality of suspended graphene can be made from our approach. To study the intrinsic properties and application of our suspended graphene membrane, the devices integrated with suspended graphene were fabricated. The results shows that the carrier mobility on suspended graphene is enhanced up to 154% when compared with the substrate supported graphene. In addition, the capacitive pressure sensor made by our ultra-large suspended graphene membrane, showing a superior high sensitivity and excellent signal linearity than conventional capacitive pressure sensors. The sensitivity of 15.15 aF / Pa were measured which is increased about 422~ 770% than silicon-based material. The developed method for ultra-large suspended graphene pave the way for the potential applications on electromechanical actuator, ultra-sensitive chemical/bio sensors as well as the high-frequency electronic devices.
關鍵字(中) ★ 石墨烯
★ 懸空石墨烯
★ 化學氣相沉積
★ 轉印
★ 電容式壓力感測器
關鍵字(英) ★ Graphene
★ Suspended Graphene
★ Chemical Vapor Deposition
★ Transfer
★ Capacitive Pressure Sensor
論文目次 頁次
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1-1文獻回顧 1
1-1-1石墨烯 1
1-1-2單層石墨烯的晶體結構 1
1-1-3石墨烯的材料性質 3
1-1-4石墨烯的應用領域 4
1-1-5石墨烯的製備方式 4
1-1-6片層微縮機制 5
1-1-7自組裝成長機制 11
1-1-8石墨烯的轉印製程 16
1-1-9捲對捲連續合成石墨烯之製程 20
1-1-10單晶石墨烯 22
1-2懸空石墨烯的物理系性質 24
1-2-1懸空石墨烯的電性 26
1-2-2懸空石墨烯的導熱性 27
1-2-3懸空石墨烯的機械強度 28
1-3懸空石墨烯製備方式 30
1-4懸空石墨烯之應用元件 34
1-4-1過濾膜 34
1-4-2壓力感測器 35
1-5實驗動機 37
第二章 實驗設備 38
2-1各類實驗藥品、氣體清冊 38
2-2高溫爐管及真空系統 39
2-3旋轉塗佈機 39
2-4表面分析儀器 40
2-4-1 二維表面粗度量測儀 40
2-4-2掃描式電子顯微鏡 40
2-4-3穿隧式電子顯微鏡 40
2-4-4原子力顯微鏡 40
2-4-5接觸角量測儀 41
2-5光學分析儀器 41
2-5-1紫外光/可見光/近紅外光譜儀 41
2-5-2拉曼光譜儀 41
2-6 電性分析 42
2-6-1霍爾量測儀 42
2-6-2電感、電容、電阻量測儀 42
2-6-3四點探針量測儀 42
2-7元素分析 43
2-7-1 X光電子能譜儀 43
第三章 實驗架構與流程 44
3-1製程步驟 45
3-1-1銅基板之電解拋光平坦化 45
3-1-2單晶石墨烯成長 45
3-1-3單晶石墨烯轉印 47
3-1-4石墨烯完整成長 48
3-1-5多層堆疊石墨烯 49
3-1-6製備懸空石墨烯 50
3-1-7懸空石墨烯之壓力感測元件製作 52
3-1-8懸空石墨烯元件之電容值量測 52
第四章 結果與討論 53
4-1電解拋光對於銅箔表面粗糙度之優化參數探討 53
4-2單晶石墨烯成長結果 55
4-2-1石墨烯統單晶尺寸統計定義 55
4-2-2單晶石墨烯成長結果之表面形貌分析 56
4-3石墨烯連續薄膜成長 65
4-4多層堆疊石墨烯 69
4-5懸空多層石墨烯 72
4-5-1清洗溶劑接觸角量測 72
4-5-2懸空石墨烯製備方法比較 73
4-5-3完成懸空成功率比較 75
4-5-4多層石墨烯之拉曼光譜圖 76
4-5-5霍爾量測 78
4-5-6 X射線光電子能譜圖 80
4-5-7懸空石墨烯電容值 82
4-6 本實驗與其他工作之結果比較 84
第五章 結論 85
第六章 未來展望 86
參考文獻 87
參考文獻 1. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
2. Castro Neto, A.H., et al., The electronic properties of graphene. Reviews of Modern Physics, 2009. 81(1): p. 109-162.
3. R. Satio, G.D.a.M.S.D., Physical Properties of Carbon Nanotube. Imperial College Press, London, 1998.
4. Li, X.S., et al., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters, 2009. 9(12): p. 4359-4363.
5. Stoller, M.D., et al., Graphene-Based Ultracapacitors. Nano Letters, 2008. 8(10): p. 3498-3502.
6. Tech., G.t.p.b.B.G., 2013.
7. He, Y.M., et al., Freestanding Three-Dimensional Graphene/MnO2 Composite Networks As Ultra light and Flexible Supercapacitor Electrodes. Acs Nano, 2013. 7(1): p. 174-182.
8. Edwards, R.S. and K.S. Coleman, Graphene synthesis: relationship to applications. Nanoscale, 2013. 5(1): p. 38-51.
9. Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. J. Am. Chem. Soc, 1958: p. 80 (6), p 1339–1339.
10. He, H.Y., et al., A new structural model for graphite oxide. Chemical Physics Letters, 1998. 287(1-2): p. 53-56.
11. Paredes, J.I., et al., Graphene oxide dispersions in organic solvents. Langmuir, 2008. 24(19): p. 10560-10564.
12. Loh, K.P., et al., Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2010. 2(12): p. 1015-1024.
13. Su, C.Y., et al., Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors. Acs Nano, 2010. 4(9): p. 5285-5292.
14. Hernandez, Y., et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 2008. 3(9): p. 563-568.
15. Su, C.Y., et al., High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. Acs Nano, 2011. 5(3): p. 2332-2339.
16. Pierson, H.O., Handbook of Chemical Vapour Deposition. Noyes Publications, Park Ridge, NJ 1992.
17. Yu, Q.K., et al., Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 2008. 93(11): p. 1031-1033.
18. Nezich, D., A. Reina, and J. Kong, Electrical characterization of graphene synthesized by chemical vapor deposition using Ni substrate. Nanotechnology, 2012. 23(1): p. 9.
19. Li, X.S., et al., Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Letters, 2009. 9(12): p. 4268-4272.
20. Hao, Y.F., et al., The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper. Science, 2013. 342(6159): p. 720-723.
21. Wu, W., et al., Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes. Nanotechnology, 2012. 23(3): p. 8.
22. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010. 5(8): p. 574-578.
23. Wang, Y., et al., Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst. Acs Nano, 2011. 5(12): p. 9927-9933.
24. Wang, D.Y., et al., Clean-Lifting Transfer of Large-area Residual-Free Graphene Films. Advanced Materials, 2013. 25(32): p. 4521-4526.
25. Su, C.Y., et al., Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition. Nano Letters, 2011. 11(9): p. 3612-3616.
26. https://graphene-supermarket.com/CVD-Graphene-on-Metals/.
27. Kobayashi, T., et al., Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Applied Physics Letters, 2013. 102(2): p. 4.
28. Yu, Q.K., et al., Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nature Materials, 2011. 10(6): p. 443-449.
29. Huang, P.Y., et al., Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature, 2011. 469(7330): p. 389-392.
30. Han, G.H., et al., Influence of Copper Morphology in Forming Nucleation Seeds for Graphene Growth. Nano Letters, 2011. 11(10): p. 4144-4148.
31. Lee, J.H., et al., Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium. Science, 2014. 344(6181): p. 286-289.
32. Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9–10): p. 351-355.
33. Balandin, A.A., et al., Superior thermal conductivity of single-layer graphene. Nano Letters, 2008. 8(3): p. 902-907.
34. Lee, C., et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008. 321(5887): p. 385-388.
35. Meyer, J.C., et al., The structure of suspended graphene sheets. Nature, 2007. 446(7131): p. 60-63.
36. Du, X., et al., Approaching ballistic transport in suspended graphene. Nature Nanotechnology, 2008. 3(8): p. 491-495.
37. Aleman, B., et al., Transfer-Free Batch Fabrication of Large-Area Suspended Graphene Membranes. Acs Nano, 2010. 4(8): p. 4762-4768.
38. Lee, C.K., et al., Monatomic Chemical-Vapor-Deposited Graphene Membranes Bridge a Half-Millimeter-Scale Gap. Acs Nano, 2014. 8(3): p. 2336-2344.
39. Celebi, K., et al., Ultimate Permeation Across Atomically Thin Porous Graphene. Science, 2014. 344(6181): p. 289-292.
40. Smith, A.D., et al., Electromechanical Piezoresistive Sensing in Suspended Graphene Membranes. Nano Letters, 2013. 13(7): p. 3237-3242.
41. 吳裕弘, 簡昭珩. 應用熱壓崁入技術製作電容式壓力感測器. 大同大學, 機械工
程研究所碩士論文, 中華民國九十七年七月
42. Sherif, S., et al., Modeling of Sensitivity of fabricated Capacitive Pressure Sensor.
IEEE Industrial Electronics, IECON 2006 - 32nd Annual Conference, p.3166 - 3169
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2015-10-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明