博碩士論文 102323042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.219.31.204
姓名 陳宏哲(Hung-zhe Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用白金奈米粒子製備多孔矽結構梯度表面之潤濕性研究
相關論文
★ 以流體式數值模擬直流磁控電漿濺鍍系統之磁場影響★ 利用鉻薄膜為濕蝕刻遮罩製備石英奈米針狀結構之研究
★ 石英蝕刻微結構之非等向性研究★ 具有微結構之石英表面聲波感測器之共振頻率數值模擬與分析
★ 以數值模擬方法探討電感耦合式電漿輔助製程之氣體溫度與腔體熱分析★ 石英柱狀微結構濕蝕刻製程之研究
★ 利用暫態熱微影技術製備高分子微結構★ 石英柱狀微結構之表面聲波感測器之研製與特性分析
★ 利用電子束微影製作高密度石英柱狀結構★ 利用暫態熱線法之微型熱傳導係數量測元件之設計與製備
★ 石英微結構對表面接觸角與潤濕性影響之研究★ 石英奈米針狀結構表面之潤濕性及遲滯性研究
★ 利用示差掃描熱量分析與雷射閃光熱擴散法 研究牛血清蛋白之熱變性★ MOCVD噴淋式腔體沉積模擬與進氣系統分析
★ The Deposition and Microstructure of Tungsten Oxide Films by Physical Vapor Deposition★ 利用聲子波茲曼方程式分析非對稱多孔矽之熱傳性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來微流體的技術迅速發展,其應用擴及生物科技、醫療技術,機密機械潤滑等,尤其在生物醫學檢測的應用上具有非常大的潛力。透過半導體製程使生醫晶片微小化,降低檢測樣品試劑之體積,並增加感測精度。趨動微流體可利用壓力差、電濕潤、毛細力、化學梯度、熱泳或光泳等方式,其中利用結構表面粗糙度差異驅使液滴移動的方式具有操作容易與製程簡單的優點,然而大部分的研究多是利用分段的結構梯度進行相關實驗。本文利用金屬輔助化學蝕刻,利用遞增的金屬膜厚製備出連續的奈米多孔矽結構梯度,探討液珠於結構梯度表面移動情形。

奈米多孔矽結構具有高表面積及物體吸附特性,與半導體製程有良好的相容性。多孔矽結構常利用蝕刻製備,其中以金屬輔助化學蝕刻製備多孔矽奈米結構具有製程簡易與設備成本低等優點。本文會先沉積白金薄膜以熱退火製程來製備奈米粒子,再進行金屬輔助化學蝕刻。藉由調整不同的白金膜厚和蝕刻時間來控制出相對應的奈米結構,探討奈米粒子大小、蝕刻時間和蝕刻結果的關聯性;再將蝕刻後的試片進行接觸角量測和改質,探討不同蝕刻結構和接觸角、遲滯效應的關係。最後結合以上結果,利用王水逐漸蝕刻出不同的膜厚形成梯度,進行蝕刻達到連續的多孔結構梯度。結果顯示所製備之多孔結構梯度所造成的趨動力相當小,並不足以造成液珠移動,不過透過接觸角量測和利用傾斜移動阻力的分析得知左右兩邊結構梯度具有遲滯上的差異。最後利用極性小的角鯊烷液體進行毛細擴散實驗,發現角鯊烷在擴散時,會往結構毛細力較小的區域移動較多。
摘要(英) Microfluidics has been grown up very fast recently, and widely used in biomedical and chemical analysis, and precision machinery lubrication. Microfluidic devices utilize microfabrication to minimize thier size, which can reduce the amount of test samples and reagents, enhance the accuracy of detection. The droplet-based microfluidic device is one of the promising technologies. The droplet can be driven by pressure difference, electro-wetting, capillary force, chemical gradient, thermophoresis, photopheresis and so on. Among these, the capillary force or the use of surface roughness changes has the advantage of simple operation and simple manufacturing process. However, most of the literatures only demonstrate the feasibility of water movement between two discrete surfaces with different roughnesses. In this study, we use metal assisted chemical etching to make nano porous silicon structure with continuous change in the surface roughness and investigate the drops movement on the surface.

Porous silicon structure has large surface to volume ratio Metal assisted chemical etching process is an simple and cost effective way to make porous silicon. In this research, we deposit platinum films and use thermal annealing to make nano particles for the following metal assisted chemical etching. The corresponding nano structures can be made by adjusting different thickness of platinum films and different etching times. The relationship between different thickness of platinum films and etching times is investigated. The contact angle and hysteresis are measured to study the wettability of the porous surfaces. Different metal thickness is made by steady pulling the sample out of the etchant, that is then annealed and etched to produce porous structural with continuous structure size gradients. The results show that the driving force given by continuous porous structural gradients is very small, and is unable to drive the liquid drops. On the other hand, we find that there is a different hysteresis between the structural gradients on the two sides from the contact angles measurements of the inclined surface. Finally, we use squalane to test the capillary motion on the surface, which shown that squalane will move further toward the area with smaller pore structures.
關鍵字(中) ★ 多孔矽結構
★ 金屬輔助化學蝕刻
★ 薄膜熱退火
★ 潤濕性
★ 液滴移動
關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xiv
第一章 緒論 1
1.1 前言 1
1.2文獻回顧 2
1.2.1金屬輔助化學蝕刻 2
1.2.2薄膜退火機制 5
1.2.3表面潤濕性研究 6
1.3研究動機與目的 11
1.4 論文架構 12
第二章 理論基礎 13
2.1 金屬輔助化學蝕刻 13
2.2 薄膜熱退火機制 15
2.3 接觸角理論 16
2.3.1 楊氏方程式 (Young’s equation) 17
2.3.2 溫佐模型 (Wenzel model) 18
2.3.4 混合模型 19
2.4 遲滯效應 20
2.3.3 卡西模型 (Cassie and Baxter model) 20
2.4.1 動態接觸角 21
2.4.2 表面改質原理 23
2.4.3 蓮花效應與花瓣效應 24
第三章 研究方法 27
3.1 研究架構 27
3.2 實驗流程 28
3.2.1 多孔矽結構製作 28
3.2.2 接觸角量測 30
3.2.3 結構梯度試片製作 31
3.3 統計及分析 32
第四章 結果與討論 34
4.1 奈米粒子生長 34
4.1.1 白金厚度影響 34
4.1.2 製程環境影響 38
4.2 蝕刻結果 41
4.2.1 分佈密度對結構影響 41
4.2.2 基準蝕刻現象及頂部蝕刻影響 45
4.2.3 白金厚度對結構影響 54
4.3 接觸角量測 81
4.3.1 靜態接觸角量測結果 81
4.3.2 動態接觸角量測結果 93
4.4 製備結構梯度與量測結果分析 98
4.4.1 結構梯度製備結果 98
4.4.2 結構梯度接觸角量測 104
4.4.3 結構梯度阻力分析 108
4.4.4 不同液體於結構梯度現象 115
第五章 結論與未來展望 119
5.1 結論 119
5.2 未來展望 120
參考文獻 121
參考文獻 [1] S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg and B. L. Miller, “Porous SiliconMicrocavities for Biosensing Applications,” phys. stat., sol. (a) vol. 182, pp. 541-546, 2000.

[2] A. I. Boukai, Y. Bunimovich, J. T. Kheli, J. K. Yu, W. A. Goddard III and J. R. Heath, “Enhanced thermoelectric performance of rough silicon nanowires, ” Nature, vol. 451, 2008.

[3] A. Uhlir, “Electrolytic shaping of germanium and silicon,” Bell system Technology Journal, Vol. 35, pp. 333, 1956

[4] R. N. Wenzel,“Resistance of solid surfaces to wetting by water”, Ind. Eng. Chem. , pp 988–994 , 1936.

[5] W. Barthlott and C. Neinhuis, “Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces,”Planta, Vol. 202, pp. 1-8, 1997

[6] X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon,” Applied Physics Letters, vol. 77, pp. 2572-2574, 2000.

[7] H. Fang, Y. Wu, J. Zhao and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology vol. 17, pp. 3768-3774, 2006.

[8] K. Tsujino and M. Matsumura, “Helical nanoholes bored in silicon by wet chemical etching using platinum nanoparticles as catalyst,” Electrochemical and Solid State Letters, vol. 8, pp. C193-C195, 2005.

[9] C. L. Lee, K. Tsujino, Y. Kanda, S. Ikeda and M. Matsumura, “Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts,” J. Mater. Chem. vol. 18, pp. 1015-1020, 2008.

[10] X. Li, Y. Xiao, C. Yan, J. W. Song, V. Talalaev, L. Schweizer, K. Piekielska, A. Sprafke, J. H. Lee and R. B. Wehrspohn, “Influence of the Mobility of Pt Nanoparticles on the Anisotropic Etching Properties of Silicon,” ECS Solid State Lett. vol. 2, Issue 2, pp. 22-24, 2011

[11] S. Strobel, C. Kirkendall, J. B. Chang and K. K. Berggren, “Sub-10 nm structures on silicon bythermal dewetting of platinum,” Nanotechnology vol. 21, 2010.

[12] B. S. Kim, W. K. Ju, M. W. Lee, S. G. Lee and B. Hoan O, “Optimized process of metal assisted silicon wet etching for antireflection layer,” Microelectronic Engineering vol. 98, pp. 395-399, 2012.

[13] R. Liu, F. Zhang, C. Con, B. Cui and B. Sun, “Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching,” Nanoscale Research Letters vol. 8, pp. 155-162, 2013.

[14] Z. Yoshimitsu, A. Nakajima, T. Watanabe, K. Hashimoto, “Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets,’’Langmuir, Vol. 18, pp. 5818-5822, 2002.

[15] M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe, “Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces,’’ Langmuir, Vol. 16, No. 13, 2000.

[16] C. Sun, X. W. Zhao, Y. H. Han, Z. Z. Gu, “Control of water droplet motion by alteration of roughness gradient on silicon wafer by laser surface treatment,’’ Thin Solid Films 516 4059–4063, 2008.

[17] Y. H. Lai, J. T. Yang and D. B. Shieh, “A microchip fabricated with a vapor-diffusion self-assembled-monolayer method to transport droplets across superhydrophobic to hydrophilic surfaces,’’ Lab Chip, 10, 499–504 | 499, 2010.

[18] M. K. Dawood, H. Zheng, and T. H. Liew, “Mimicking Both Petal and Lotus Effects on a Single Silicon Substrate by Tuning the Wettability of Nanostructured Surfaces,’’ Langmuir , 27, 4126–4133, 2011.

[19] W. Zhang, X. Fan, S. Sang, P. Li, G. Li, Y. Sun, and J. Hu, “Fabrication and characterization of silicon nanostructures based on metal-assisted chemical etching,’’ Korean J. Chem. Eng., 31(1), 62-67, 2013.

[20] C. Chartier, S. Bastide and C. Le’vy-Cle’ment, “Metal-assisted chemical etching of silicon in HF-H2O2,” Electrochimica Acta vol. 53, pp. 5509-5516, 2008.

[21] E. Jiran, C. V. Thompson, “Capillary instabilities in thin films,’’ Journal of Electronic Materials, 19(11):1153-60, 1990.

[22] T. Young, “An Essay on the Cohesion of Fluids,’’ Philosophical Transactions of the Royal Society, Vol. 95, pp. 65-87, 1805.

[23] A.B.D. Cassie, S. Baxter, “Wettability of Porous Surfaces,” Transactions of the Faraday Society, Vol. 40, pp. 546-551, 1944.

[24] X.B. Zhou and J. T. M. De Hosson, “Influence of surface roughness on the wetting angle”, J. Mater. Res. Vol. 10, 1995.

[25] L. Gao and T. J. McCarthy, “Contact Angle Hysteresis Explained,” Langmuir , 22, 6234-6237, 2006.

[26] M. E. McGovern, K. M. R. Kallury, and M. Thompson, “Role of Solvent on the Silanization of Glass with Octadecyltrichlorosilane,” Langmuir 10, 3607-3614,1994.

[27] L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang, “Petal Effect: A Superhydrophobic State with High Adhesive Force,” Langmuir, Vol. 24, pp. 4114-4119, 2008.

[28] H. J. Wang, H. C. Tsai, H. K. Chen and T. K. Shing, “Capillarity of Rectangular Micro Grooves and Their Application to Heat Pipes,’’ Taoyuan, Taiwan 333, R.O.C., 2005.
指導教授 洪銘聰(Ming-Tsing Hung) 審核日期 2016-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明