博碩士論文 102323043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.12.36.30
姓名 洪立翰(Li-han Hong)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 合成氣於加壓型SOFC之性能量測及其微氣渦輪機複合系統之模擬分析
(Numerical Simulation and Analysis of Pressurized SOFC Combined with Micro Gas Turbines and Experimental Measurements of PSOFC Using Syngas Fuel)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要有兩大部分: (1) 加壓型固態氧化物燃料電池(PSOFC)結合微氣渦輪機(MGT)複合發電系統,以下簡稱PSOFC-MGT之模擬與分析;(2) PSOFC使用合成氣燃料之實驗量測。有關第一部分之研究,乃以熱力分析模擬軟體Aspen plus來建立PSOFC-MGT模組。其中PSOFC之相關參數使用Siemens Westinghouse公司所開發的管狀式PSOFC,將之分別與四種市售的MGT作結合,並分別使用三種不同的燃料即合成氣(syngas)、氨氣(ammonia)和天然氣(natural gas, NG)於前述四種PSOFC-MGT模組,來進行模擬與分析。結果顯示PSOFC-MGT使用天然氣會具有最高的能量與可用能效率,當PSOFC結合較高功率的MGT時,其系統相關效率會降低,而可用能損失主要發生在複合式系統的燃燒室、PSOFC及尾氣端。
第二部分研究,乃使用本實驗室已建立之雙腔體高壓SOFC實驗平台,並分別使用兩種不同陽極支撐鈕扣型全電池(Fuel Cell Materials , FCM, ASC 2.0和Elcogen, ASC 10-B),在實驗條件完全相同下(i.e. 1atm, 750oC)量測其電池性能與電化學阻抗頻譜。實驗結果為Elcogen之功率密度較FCM高出甚多,在固定電壓0.8V條件下,Elcogen是FCM的8倍,前者功率密度為1250mW cm-2,後者為150mW cm-2,相關電化學阻抗頻譜量測資料,解釋了前述電池性能的差異。之後,我們選定具高電池性能之Elcogen, ASC 10-B來進行以合成氣為燃料之實驗,陽極通入流率為70ml min-1 H2 + 130ml min-1 CO之合成氣,陰極為200ml min-1空氣,在不同壓力(1和3atm)和不同溫度(750和800oC)條件下,量測其電池性能與電化學阻抗頻譜,以探討溫度與壓力效應對電池性能和其阻抗頻譜之影響。此外,針對SOFC使用合成氣燃料進行性能穩定性量測約90分鐘,並分析性能穩定性實驗前後之電化學頻譜差異。結果顯示,氫氣的OCV與功率密度較合成氣略高,常壓下合成氣之功率密度為1020mW cm-2,而3大氣壓下為1120 mW cm-2,相較於常壓約提升10%。加壓可減少其極化阻抗,但歐姆阻抗並無影響。溫度增加可提升性能,主要是升溫可減少歐姆阻抗,但會增加極化阻抗。最後,分析性能穩定性量測相關結果,顯示常壓下電池性能在測試期間(90分鐘)幾乎無衰退,而實驗前後之極化阻抗亦無明顯變化。750oC、3大氣壓下操作17分鐘後,電池極化阻抗明顯增加,使電池性能有明顯衰退,但若提高操作溫度可有效改善此衰退現象,本研究結果顯示,若使用合成氣為燃料且電池操作在高壓條件(3atm),則操作溫度應高於750oC,才能避免電池性能隨操作時間增加而衰退的現象。本研究成果應對於發展PSOFC-MGT複合式發電系統有所助益。
摘要(英) This thesis has two parts: (1) Numerical simulation and analysis of pressurized solid oxide fuel cell combined with micro gas turbines (PSOFC-MGT) for hybrid power generation and (2) experimental measurements of PSOFC using syngas fuel. In the first part, we have developed a PSOFC-MGT model by using a thermal analysis software (Aspen plus). The PSOFC model was based on tubular SOFCs developed by Siemens-Westinghouse, which was incorporated by four different commercially available micro gas turbines (C30, C60, P75, T100;C for Capstone, P for Parallon, T for Turbec; the digital numbers indicating the power in kilowatts). Three different fuels i.e. natural gas (mainly CH4), syngas (35%H2+65%CO), and ammonia (NH3) were tested in the present PSOFC-MGT model. Results show that natural gas as fuel has highest energy and exergy efficiency, and the exergy losses occur primarily in the burner, PSOFC, and exhausted gases end of hybrid system.
In the second part study, we apply a recently-established dual-chamber high-pressure SOFC testing platform for measurement of current-voltage curves and electrochemical impedance spectra (EIS) using two different anode-supported full button cells (i.e. Fuel Cell Materials, FCM, ASC 2.0 and Elcogen, ASC 10-B under the same experimental conditions(e.g. 1atm, 750oC, same flow rates). The power density of Elcogen is higher than FCM as can be explained by the EIS date. Then, we choose Elcogen, ASC 10-B for the syngas as a fuel study. The current-voltage curves and electrochemical impedance spectra (EIS) were measured, where the flow rates in anode was 70ml min-1 H2 + 130ml min-1 CO and in cathode was 200ml min-1 air at two different pressures (1、3atm) and different temperature (750、800oC). Also, the performance stability of the cell was tested. Results show that the OCV and power densities using hydrogen as a fuel are higher than that of syngas. Power densities of both hydrogen and syngas cases are increased with increasing pressure. The power density of syngas at 3 atm is found to be about 10% higher than that at 1atm. It is found that the ohmic resistance is independent of pressure, but the polarization resistance decreases with increasing pressure. Power density increase with increasing temperature, where the ohmic resistance decreased but the polarization resistance increased with increasing temperature. Finally, the stability test result shows that the power density remains nearly constant without degradation at 1 atm and 750oC, where the polarization resistance remains unchanged. But it is found that the polarization resistance increased and the power density has a serious degradation during a 17-minute stability test at 3 atm. Such degradation can be improved by increasing temperature. The present study should be useful for the development of PSOFC integrating with micro gas turbines for future stationary power generation.
關鍵字(中) ★ 加壓型SOFC
★ 天然氣
★ 氨氣
★ 合成氣
關鍵字(英) ★ pressurized SOFC
★ natural gas
★ ammonia
★ syngas
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
圖表目錄 viii
第一章 前言 1
1.1 研究動機 1
1.2 問題所在 2
1.3 解決方法 4
1.4 論文綱要 5
第二章 文獻回顧 7
2.1 SOFC基本介紹 7
2.2 SOFC的運作原理與極化現象 9
2.3 電化學阻抗頻譜與等效電路模組 12
2.4 PSOFC-MGT文獻回顧 15
2.5 SOFC使用合成氣之相關文獻 18
第三章 PSOFC-MGT模型與計算方法 29
3.1 PSOFC-MGT複合式發電系統模型 29
3.2 電壓與可用能的計算方法 31
第四章 實驗設備與量測方法 39
4.1 SOFC高壓實驗測試平台 39
4.2 實驗流程與量測操作參數設定 41
第五章 結果與討論 48
5.1 PSOFC-MGT複合系統之模擬與分析 48
5.1.1 不同複合式系統與燃料之可用能損失比較 48
5.1.2 不同複合式系統與燃料之效率比較 50
5.2 PSOFC之合成氣實驗量測與分析 51
5.2.1 合成氣與氫氣之性能特性曲線與電化學阻抗頻譜量測結果 52
5.2.2 壓力效應對於合成氣之影響 54
5.2.3 合成氣之性能穩定性量測與結果分析 55
5.2.4 溫度效應對於合成氣之影響 57
第六章 結論與未來工作 73
6.1 結論 73
6.2 未來工作 74
參考文獻 75
參考文獻 [1] S.C. Singhal, “Advances in solid oxide fuel cell technology”, Solid State Ionics, Vol. 135, pp. 305-313, 2000.
[2] H.C. Patel, T. Woudstra, P.V. Aravind, “Thermodynamic Analysis of Solid Oxide Fuel Cell Gas Turbine Systems Operating with Various Biofuels”, Fuel Cell, Vol. 12, pp. 1115-1128, 2012.
[3] C. Willich, C. Westner, M. Henke, F. Leucht, J. Kallo, and K. A. Friedrich, “Pressurized Solid Oxide Fuel Cells with Reformate as Fuel”, Journal of The Electrochemical Society, Vol. 159, pp. F711-F716, 2012.
[4] Y. Kobayashi, Y. Ando, T. Kabata, M. Nishiura, K Tomida, N. Matake, “Extremely High-efficiency Thermal Power System-Solid Oxide Fuel Cell (SOFC) Triple Combined-cycle System”, Mitsubishi Heavy Industries Technical Review, Vol. 48, 2011.
[5] A. Fuerte, R.X. Valenzuela, M.J. Escudero, L. Daza, “Ammonia as efficient fuel for SOFC”, Journal of Power Sources, Vol. 192, pp. 170-174, 2009.
[6] D.P. Bakalis, A.G. Stamatis, “Full and part load exergetic analysis of a hybrid micro gas turbine fuel cell system based on existing components”, Energy Conversion and Management, Vol. 64, pp. 213-221, 2012.
[7] Y. Li, Y. Weng, “Performance study of a solid oxide fuel cell and gas turbine hybrid system”, Journal of Power Sources, Vol. 196, pp. 3824-2835, 2011.
[8] T. Suther, A.S. Fung, M. Koksal and F. Zabihian, “Effects of operating and design parameters on the performance of a solid oxide fuel cell–gas turbine system”, International Journal of Energy Research, Vol. 35, pp. 616-632, 2011.
[9] L. Fryda, K.D. Panopoulos, E. Kakaras, “Integrated CHP with autothermal biomass gasification and SOFC–MGT”, Energy Conversion & Management, Vol. 49, pp. 281-290, 2008.
[10] W. Zhang, E. Croiset, P.L. Douglas, M.W. Fowler, E. Entchev, “Simulation of a tubular solid oxide fuel cell stack using AspenPlusTM unit operation models”, Energy Conversion and Management, Vol. 46, pp.181-196, 2005.
[11] W. Doherty, A. Reynolds, D. Kennedy, “Computer simulation of a biomass gasification-solid oxide fuel cell power system using Aspen Plus”, Energy, Vol. 35, pp. 4545-4555, 2010.
[12] D.P. Bakalis, A.G. Stamatis, “Incorporating available micro gas turbines and fuel cell: Matching considerations and performance evaluation”, Applied Energy, Vol. 103, pp. 607–617, 2013.
[13] O. Costa-Nunes, R.J. Gorte, J.M. Vohs, “Comparison of the performance of Cu–CeO2–YSZ and Ni–YSZ composite SOFC anodes with H2, CO, and syngas”, Journal of Power Sources, Vol. 141, pp. 241-249, 2005.
[14] K. Sasaki, Y. Hori, R. Kikuchi, K. Eguchi, A. Ueno, H. Takeuchi, M. Aizawa, K. Tsujimoto, H. Tajiri, H. Nishikawa, and Y. Uchida, “Current-Voltage Characteristics and Impedance Analysis of Solid Oxide Fuel Cells for Mixed H2 and CO Gases”, Journal of The Electrochemical Society, Vol. 149, pp. A227-A233, 2002.
[15] X.F. Ye, S.R. Wang, J. Zhou, F.R. Zeng, H.W. Nie, T.L. Wen, “Assessment of the performance of Ni-yttria-stabilized zirconia anodes in anode-supported Solid Oxide Fuel Cells operating on H2–CO syngas fuels”, Journal of Power Sources, Vol. 195, pp. 7264–7267, 2010.
[16] R. Suwanwarangkul, E. Croiset, E. Entchev, S. Charojrochkul, M.D. Pritzker, M.W. Fowler, P.L. Douglas, S. Chewathanakup, H. Mahaudom, “Experimental and modeling study of solid oxide fuel cell operating with syngas fuel”, Journal of Power Sources, Vol. 161, pp. 308-322, 2006.
[17] R.A. George, “A status of tubular SOFC field unit demonstrations”, Journal of Power Sources, Vol. 86, pp. 134–139, 2000.
[18] 謝易達,加壓型SOFC陽極支撐與電解質支撐單電池堆量測與分析,碩士論文,國立中央大學,2013
[19] 李雪茹,加壓SOFC陰極半電池實驗研究,碩士論文,國立中央大學,2013
[20] 吳佩真,加壓鈕扣型陽極支撐SOFC實驗量測與活化和濃度過電位分析計算,碩士論文,國立中央大學,2013
[21] 詹彥信,固態氧化物燃料電池使用甲烷燃氣之性能和電化學阻抗實驗研究,碩士論文,國立中央大學,2013
[22] B.W. Chung, C.N. Chervin, J.J. Haslam, Ai-Quoc Pham, and R.S. Glass, “Development and Characterization of a High Performance Thin-Film Planar SOFC Stack”, Journal of The Electrochemical Society, Vol. 152, pp. A265-A269, 2005.
[23] J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd Edition, John Wiley & Sons. Ltd., England, 2003.
[24] J.D. Kim, G.D. Kim, J.W. Moon, Y. Park, W.H. Lee, K. Kobayashi, M. Nagai, Chang-Eun Kim, “Characterization of LSM–YSZ composite electrode by ac impedance spectroscopy”, Solid State Ionics, Vol. 143, pp. 379-389, 2001.
[25] N.P. Brandon, D.J. Brett, “Engineering porous materials for fuel cell applications”, Philosophical Transactions A, Vol. 364, pp. 147-159, 2006.
[26] T. Mahata, S.R. Nair, R.K. Lenka, P.K. Sinha, “Fabrication of Ni-YSZ anode supported tubular SOFC through iso-pressing and co-firing route”, International of Hydrogen Energy, Vol. 37, pp. 3874-3882, 2012.
[27] D. Sarantaridis, A. Atkinson, “Redox Cycling of Ni-Based Solid Oxide Fuel Cell Anodes: A Review”, Fuel Cell, Vol. 7, pp. 246-258, 2007.
[28] M. Stelter, A. Reinert, B.E. Mai, M. Kuznecov, “Engineering aspects and hardware verification of a volume producible solid oxide fuel cell stack design for diesel auxiliary power units”, Journal of Power Sources, Vol. 154, pp. 448-455, 2006.
[29] J.C. Njodzefon, D. Klotz, A. Kromp, A. Weber, and E. Ivers-Tiff´ee, “Electrochemical Modeling of the Current-Voltage Characteristics
of an SOFC in Fuel Cell and Electrolyzer Operation Modes”, Journal of The Electrochemical Society, Vol. 160, pp. F313-F323, 2013.
[30] J. Nielsen, P. Hjalmarsson, M.H. Hansen, P. Blennow, “Effect of low temperature in-situ sintering on the impedance and the performance of intermediate temperature solid oxide fuel cell cathodes”, Journal of Power Sources, Vol. 245, pp. 418-428, 2014.
[31] J.T.S. Irvine and A. Sauvet, “Improved Oxidation of Hydrocarbons with New Electrodes in High Temperature Fuel Cells”, Fuel Cells, Vol. 1, pp. 205-210, 2001.
[32] C. Bo, C. Yuan, X. Zhao, C.B. Wu, M.Q. Li, “Parametric analysis of solid oxide fuel cell”, Clean Technologies and Environmental Policy, Vol. 11, pp. 391-399, 2009.
[33] K.J. Yoon, S.G. and U.B. Pal, “Analysis of Electrochemical Performance of SOFCs Using Polarization Modeling and Impedance Measurements”, Journal of The Electrochemical Society, Vol. 156, pp. B311-B317, 2009.
[34] F. Zhao, A.V. Virkar, “Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters”, Journal of Power Sources, Vol. 141, pp. 79-95, 2005.
[35] M. Ni, M.K.H. Leung, D.Y.C. Leung, “Parametric study of solid oxide fuel cell performance”, Energy Conversion and Management, Vol. 48, pp. 1525-1535, 2007.
[36] A. Leonide, V. Sonn, A. Weber and E. Ivers-Tiffée, “Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells”, Journal of The Electrochemical Society, Vol. 155, pp. B36-B41, 2008.
[37] J.B. Jorcin, M.E. Orazem, N. Pébère, B. Tribollet, “CPE analysis by local electrochemical impedance spectroscopy”, Electrochimica Acta, Vol. 51, pp. 1473-1479, 2006.
[38] R. Barfod, M. Mogensen, T. Klemensø, A. Hagen, Y.L. Liu, and P.V. Hendriksen, “Detailed Characterization of Anode-Supported SOFCs by Impedance Spectroscopy”, Journal of The Electrochemical Society, Vol. 154, pp. B371-B378, 2007.
[39] S. Seidler, M. Henke, J. Kallo, W.G. Bessler, U. Maier, K. Andreas Friedrich, “Pressurized solid oxide fuel cells: Experimental studies and modeling”, Journal of Power Sources, Vol. 196, pp. 7195-7202, 2011.
[40] M. Henke, C. Willich, C. Westner, F. Leuchta, R. Leibinger, J. Kallo, K.A. Friedrich, “Effect of pressure variation on power density and efficiency of solid oxide fuel cells”, Electrochimica Acta, Vol. 66, pp. 158-163, 2012.
[41] C. Li, Y. Shi, N. Cai, “Elementary reaction kinetic model of an anode-supported solid oxide fuel cell fueled with syngas”, Journal of Power Sources, Vol. 195, pp. 2266-2282, 2010.
[42] Z.R. Xu, X.Z. Fu, J.L. Luo and K.T. Chuang, “Carbon Deposition on Vanadium-Based Anode Catalyst for SOFC Using Syngas as Fuel”, Journal of The Electrochemical Society, Vol. 157, pp. B1556-B1560, 2010.
[43] T.W. Song, J.L. Sohn, J.H. Kim, T.S. Kim, S.T. Ro, K. Suzuki, “Performance analysis of a tubular solid oxide fuel cell/micro gas turbine hybrid power system based on a quasi-two dimensional model”, Journal of Power Sources, Vol. 142, pp. 30-42, 2005.
[44] E. Achenbach, “Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack”, Journal of Power Sources, Vol. 49, pp. 333-348, 1994.
[45] S.H. Chan, K.A. Khor, Z.T. Xia, “A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness”, Journal of Power Sources, Vol. 93, pp. 130-140, 2001.
[46] 張軒維,加壓型固態氧化物燃料電池性能與阻抗之定量量測與分析,碩士論文,國立中央大學,2011。
[47] M. Henke, J. Kallo, K.A. Friedrich, W.G. Bessler, “Influence of pressurisation on SOFC performance and durability : A theoretical study”, Fuel cell, Vol. 11, pp. 581-591, 2011.
[48] S.C. Singhal, K. Kendall, High temperature solid oxide fuel cells: fundamentals, design and applications, 1nd Edition, John Wiley & Sons. Ltd., New York, 2003.
[49] J.W. Kim, A.V. Virkar, K.Z. Fung, K. Mehta, S.C. Singhal, “Polarization effects in intermediate temperature, anode-supported solid oxide fuel cell”, J. Applied Electrochemistry, Vol. 146, pp. 69-78, 1999.
指導教授 施聖洋(Shenq-yang Shy) 審核日期 2015-12-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明