博碩士論文 102323057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:34.204.175.38
姓名 李世民(Shi-min Li)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 應用石墨烯鍍層之鎳金屬多孔材於質子交換膜燃料電池之研究
(Graphene-coated nickel foam for PEM fuel cell application)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用化學氣相沉積法將石墨烯成長於鎳金屬多孔材上作為腐蝕抑制層,並與市面上常見之抗蝕鍍層,氮化鈦鍍層與金鍍層進行比較;藉由表面微觀結構檢測、接觸角量測、電阻量測以及腐蝕極化測試,以分析不同鍍層之鎳金屬多孔材的化學特性與物理特性,並進一步組成單電池,進行電池性能量測、電化學交流阻抗頻譜分析以及長時間穩定性測試,以了解應用不同鍍層之鎳金屬多孔材於燃料電池內流道中之影響。

石墨烯鍍層於微觀檢測中,具有緻密的表面結構;於pH=3、80 ℃腐蝕極化測試後,結果顯示石墨烯鍍層試片仍具有優異的導電性與疏水性,並且具有最小之腐蝕電流密度為6.5x10-7 A/cm2,與基材相差了九倍之多。於單電池性能測試結果顯示,石墨烯鍍層單電池於50 ℃同加濕溫度條件下且電壓為0.6 V時,電流密度為1068 mA/cm2,具有最佳之電池性能表現,並於長時間穩定性測試下,平均輸出電流為24.31 A,顯示石墨烯鍍層具有優異的疏水特性與抗腐蝕能力。由此可知石墨烯鍍層不僅具有穩定的化學性質與優異的物理性質,成為當今最薄之腐蝕抑制層,又因石墨烯可成長於任何幾何形狀之試片,因此於表面處理中,具有相當大的發展潛能。

摘要(英) In this study, Graphene, TiN and Au are coated on the nickel foam by CVD, PVD, and electroplating process as the corrosion-inhibiting. SEM, contact angle, electrical resistance and electrochemical methods are used to characterize the properties of the different coatings. Furthermore, these surface treated nickel foam are used in single PEM fuel cell as flow distributor. I-V curves, long-term stability test and EIS are measured to investigate the effects of properties of nickel foam on the performance of PEM fuel cell.

Results from the SEM images of graphene-coated surface show that have relatively dense structures. After electrochemical test measured in pH=3 H2SO4 solution at 80 oC, graphene-coated foam still possess the best conductivity and hydrophobicity. The corrosion current density of graphene-coated foam at 80 oC reaches 6.5x10-7 A/cm2, which is the best corrosion resistance. Fuel cell operated at 50 C, the current density at 0.6 V for the fuel cell with graphene-coated foam reaches 1068 mA/cm2. Long term stability test also show that the fuel cell can maintain stable current output in 50 hours. These results demonstrate that graphene-coated has great potential for anti-corrosion for PEM fuel cell.

關鍵字(中) ★ 石墨烯鍍層
★ 鎳金屬多孔材
★ 質子交換膜燃料電池
★ 腐蝕極化測試
★ 電化學交流阻抗頻譜分析
關鍵字(英) ★ graphene-coated
★ nickel foam
★ PEM fuel cell
★ corrosion
★ EIS
論文目次 中文摘要 i

Abstract ii

致謝 iii

目錄 v

表目錄 viii

圖目錄 x

符號說明 xvi

第一章 緒論 1

1-1 前言 1

1-2 質子交換膜燃料電池 2

1-2-1 質子交換膜燃料電池之工作原理 2

1-2-2 質子交換膜燃料電池之各部構造 3

1-2-3 質子交換膜燃料電池之極化現象 7

1-3 研究動機與目的 9

第二章 文獻回顧 11

2-1 石墨烯鍍層之應用 11

2-2 氮化鈦鍍層之應用 13

2-3 金鍍層之應用 14

2-4 金屬多孔材與金屬極板之應用 17

2-5 電化學交流阻抗頻譜分析 17

第三章 實驗方法與設備 21

3-1 實驗架構與流程 21

3-2 鍍層製備 22

3-3 表面結構分析 25

3-4 接觸角量測 28

3-5 電阻量測 29

3-6 腐蝕極化測試 32

3-7 電化學交流阻抗頻譜測試 36

3-8 燃料電池各部元件 39

1. 膜電極組 39

2. 矽膠氣密墊片 40

3. 鎳金屬多孔材 40

4. 金屬雙極板與流道 41

3-9 燃料電池性能測試條件 43

3-10 燃料電池性能測試系統 46

第四章 實驗結果與討論 51

4-1 表面微觀結構分析結果 51

4-2 腐蝕極化測試結果 55

4-3 接觸角量測結果 62

4-4 電阻量測結果 65

4-5 單電池性能測試結果 71

4-5-1 改變同加濕溫度對電池性能之影響 71

4-5-2 改變加濕溫度對電池性能之影響 76

4-6 電化學交流阻抗頻譜測試結果 81

4-6-1 改變同加濕溫度對電池性能之EIS影響 82

4-6-2 改變加濕溫度對電池性能之EIS影響 93

4-7 長時間穩定性測試結果 104

第五章 結論與未來方向 117

5-1 結論 117

5-2 未來方向 119

參考文獻 121

附錄一 127

參考文獻 [1] J. Marcinkoski, J.P. Kopasz, T.G. Benjamin, “Progress in the US DOE fuel cell subprogram efforts in polymer electrolyte fuel cells,” International Journal of Hydrogen Energy, Vol. 33, no. 14, pp. 3894-3902, 2008

[2] R. O′Hyre, S.W. Cha, W. Colella, F.B.Prinz,王曉紅、黃宏譯,燃料電池基礎,全華圖書股份有限公司,台北縣,民國97年

[3] J.J. Sumner, S.E. Creager, J.J. Ma, D.D. DesMarteau, “Proton conductivity in Nafion® 117 and in a novel bis [(perfluoroalkyl) sulfonyl] imide ionomer membrane,” Journal of the Electrochemical Society, Vol. 145, no. 1, pp. 107-110, 1998

[4] X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhanga, D. Song, Z.S. Liu, H. Wang, J. Shen, “A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation,” Journal of Power Sources, Vol. 165, no. 2, pp. 739-756,2007

[5] V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross, N.M. Markovic, “Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces,” Nature Materials, Vol. 6, no. 3, pp. 241-247, 2007

[6] R.A. Antunes, M.C.L. Oliveira, G. Ett, V. Ett, “Corrosion of metal bipolar plates for PEM fuel cells: A review,” International Journal of Hydrogen Energy, Vol. 35, pp. 3632-3647, 2010

[7] 黃鎮江,燃料電池(第三版),滄海書局,台中市,民國97年

[8] O. Antoine, Y. Bultel, R. Durand, “Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion®,” Journal of Electroanalytical Chemistry, Vol. 499, no. 1, pp. 85-94, 2001

[9] R. Taherian, “A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection,” Journal of Power Sources, Vol. 265, pp. 370-390, 2014

[10] R. Taherian, “A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection,” Journal of Power Sources, Vol. 265, pp. 370-390, 2014

[11] X. Li, I. Sabir. “Review of bipolar plates in PEM fuel cells Flow-field designs,” International Journal of Hydrogen Energy, Vol. 30, pp. 395-371, 2005

[12] R.K. Singh Raman, A. Tiwari, “Graphene: The thinnest known coating for corrosion protection,” JOM, Vol. 66, no. 4, pp. 637-642, 2014

[13] D. Prasai, J.C. Tuberquia, R.R. Harl, G.K. Jennings, K.I. Bolotin, “Graphene: Corrosion-inhibiting coating,” ACS Nano, Vol. 6, no. 2, pp. 1102-1108, 2012

[14] U. Mogera, N. Kurra, D. Radhakrishnan, C. Narayana, G.U. Kulkarni, “Low cost, rapid synthesis of graphene on Ni: An efficient barrier for corrosion and thermal oxidation,” Carbon, Vol. 78, pp. 384-391, 2014

[15] N.W. Pu, G.N. Shi, Y.M. Liu, X. Sun, J.K. Chang, C.L. Sun, M.D. Ger, C.Y. Chen, P.C. Wang, Y.Y. Peng, C.H. Wu, S. Lawes, “Graphene grown on stainless steel as a high-performance and ecofriendly anti-corrosion coating for polymer electrolyte membrane fuel cell bipolar plates,” Journal of Power Sources, vol. 282, pp. 248-256, 2015

[16] M. Li, S. Luo, C. Zeng, J. Shen, H. Lin, C. Cao, “Corrosion behavior of TiN coated type 316 stainless steel in simulated PEMFC environments,” Corrosion Science, Vol. 46, pp. 1369-1380, 2004

[17] Y. Wang, D.O. Northwood, “An investigation into TiN-coated 316L stainless steel as a bipolar plate material for PEM fuel cells,” Journal of Power Sources, Vol. 165, no. 1, pp. 293-298, 2007

[18] S. Pugal Mani, A. Srinivasan, N. Rajendran, “Effect of nitrides on the corrosion behaviour of 316L SS bipolar plates for Proton Exchange Membrane Fuel Cell (PEMFC),” International Journal of Hydrogen Energy, Vol. 40, no. 8, pp. 3359-3369, 2015

[19] J. Wind, R. Späh, W. Kaiser, G. Böhm, “Metallic bipolar plates for PEM fuel cells,” Journal of Power Sources, Vol. 105, no. 2, pp. 256-260, 2002

[20] S.H. Wang, J. Peng, W.B. Lui, J.S. Zhang, “Performance of the gold-plated titanium bipolar plates for the light weight PEM fuel cells,” Journal of Power Sources, Vol. 162, no. 1, pp. 486-491, 2006

[21] Y.H. Yun, “Deposition of gold-titanium and gold-nickel coatings on electropolished 316L stainless steel bipolar plates for proton exchange membrane fuel cells,” International Journal of Hydrogen Energy, Vol. 35, no. 4, pp. 1713-1718, 2010

[22] S.Y. Tsai, C.Y. Bai, C.H. Lin, G.N. Shi, K.H. Hou, Y.M. Liu, M.D. Ger, “The characteristics and performance of electroless nickel and immersion Au plated aluminum alloy bipolar plates in polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 214, pp. 51-58, 2012

[23] B.T. Tsai, C.J. Tseng, Z.S. Liu, C.H. Wanga, C.I. Lee, C.C. Yang, S.K. Lo, “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor,” International Journal of Hydrogen Energy, Vol. 37, pp. 13060-13066, 2012

[24] C.J. Tseng, B.T. Tsai, Z.S. Liu, T.C. Cheng, W.C. Chang, S.K. Lo, “A PEM fuel cell with metal foam as flow distributor,” Energy Conversion and Management, Vol. 62, pp. 14-21, 2012

[25] S.M. Rezaei Niya, M. Hoorfar, “Study of proton exchange membrane fuel cells using electrochemical impedance spectroscopy technique - A review,” Journal of Power Sources, Vol. 240, pp. 281-293, 2013

[26] X. Yuan, J.C. Sun, M. Blanco, H. Wang, J. Zhang, D.P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stack Part I: Stack impedance, ”Journal of Power Sources, Vol. 161, pp. 920-928, 2006

[27] X. Yan, M. Hou, L. Sun, D. Liang, Q. Shen, H. Xu, P. Ming, B. Yi. “AC impedance characteristics of a 2 kW PEM fuel cell stack under different operating conditions and load changes,” International Journal of Hydrogen Energy, Vol. 32, pp. 4358-4364, 2007

[28] D. Aaron, S. Yiacoumi, C. Tsouris, “Effects of proton-exchange membrane fuel-cell operating conditions on charge transfer resistances measured by electrochemical impedance spectroscopy,” Separation Science and Technology, Vol. 43, no. 9-10, pp. 2307-2320, 2008

[29] M. Zhiani, S. Majidi, “Effect of MEA conditioning on PEMFC performance and EIS response under steady state condition,” International Journal of Hydrogen Energy, Vol. 38, no. 23, pp. 9819-9825, 2013

[30] C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, “Graphene: the new two-dimensional nanomaterial,” Angewandte Chemie-International Edition, Vol. 48, no. 42, pp. 7752-7777, 2009

[31] S.H. Lee, T.H. Yang, S.H. Hyun, Y.S. Yoon, “Corrosion behavior of pre-oxidized and thermally nitrided stainless steel for polymer electrolyte membrane fuel cell bipolar plates,” Corrosion Science, Vol. 58, pp. 79-85, 2012

[32] W. Yoon, X. Huang, P. Fazzino, K.L. Reifsnider, M.A. Akkaoui, “Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 179, no. 1, pp. 265-273, 2008

[33] S.J. Lee, C.H. Huang, Y.P. Chen, “Investigation of PVD coating on corrosion resistance of metallic bipolar plates in PEM fuel cell,” Journal of Materials Processing Technology, Vol. 140, no. 1-3 SPEC., pp. 688-693, 2003

[34] E. Dur, O.N. Cora, M. Ko, “Experimental investigations on the corrosion resistance characteristics of coated metallic bipolar plates for PEMFC,” International Journal of Hydrogen Energy, Vol. 36, no. 12, pp. 7162-7173, 2011

[35] W.H. Zhu, R.U. Payne, B.J. Tatarchuk, “PEM stack test and analysis in a power system at operational load via ac impedance, ”Journal of Power Sources, Vol. 168, pp. 211-217, 2007

[36] M. Ciureanu, R. Roberge, “Electrochemical impedance study of PEM fuel cells. Experimental diagnostics and modeling of air cathodes,” Journal of Physical Chemistry B, Vol. 105, no. 17, pp. 3531-3539, 2002

[37] 吳佩蓉,「腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究」,國立中央大學能源工程研究所碩士論文,2013

[38] J. Barranco, F. Barreras, A. Lozano, M. Maza, “Influence of CrN-coating thickness on the corrosion resistance behaviour of aluminium-based bipolar plates, ”Journal of Power Sources, Vol. 196, pp. 4283-4289, 2011

[39] D. Zhang, L. Duan, L. Guo, W.H. Tuan, “Corrosion behavior of TiN-coated stainless steel as bipolar plate for proton exchange membrane fuel cell, ”International Journal of Hydrogen Energy, Vol. 35, pp. 3721-3726, 2010

[40] T. Abe, H. Shima, K. Watanabe, Y. Ito, “Study of PEFCs by AC Impedance, Current Interrupt, and Dew Point Measurements I. Effect of Humidity in Oxygen Gas, ”Journal of The Electrochemical Society, Vol. 151, pp. A101-A105, 2004

[41] 蔡秉蒼,「應用金屬發泡材為流道之質子交換膜燃料電池之研究」,國立中央大學能源工程研究所博士論文,2012

指導教授 曾重仁(Chung-jen Tseng) 審核日期 2015-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明