博碩士論文 102323061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.235.228.219
姓名 謝耀德(Yao-Te Hsieh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 CZ法生長大尺寸氧化鋁單晶過程之數值模擬分析
(Numerical Simulation of Large-Size Sapphire Crystal Growth with the Czochralski Process)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 柴式長晶法(Czochralski method, CZ)是目前常用來生長高品質單晶的方法之一,在近年來,這項晶體生長技術已經應用於大尺寸藍寶石單晶生長。為了確保晶體生長品質,我們必須深入了解CZ長晶爐內熔湯的流動行為與熱傳機制。
對於大尺寸晶體生長,受限於爐體溫度過高,無法以實驗直接進行量測,且過於費時,因此我們使用數值模擬的方式,更有效率的來對長晶參數進行製程改善,以減少實驗所耗費的時間與成本。本研究運用以有限元素法(FEM)為基礎的套裝軟體COMSOL Multiphysics,針對大尺寸藍寶石晶體生長之熱流場、固液界面形狀以及熱應力分佈,進行深入研究。
本研究結果發現,熔湯的流場型態由浮力渦流所主導,溫度場中的等溫線會受到強烈的浮力對流影響而扭曲變形,其強度隨著加熱器功率調降而降低;固液界面形狀會隨著晶身長度越長而越凸向熔湯;坩堝的旋轉會增強浮力渦旋的強度,加強熱對流的傳遞;晶體的旋轉會使固液界面下方熔湯受離心力作用,產生一強制渦流,將更多的熱量傳輸至固液界面。坩堝與晶體的反向旋轉,能降低晶體凸出率,使固液介面較為平坦。坩堝與晶體之間,在不同晶體的生長階段時,有著最佳的轉速配合。在熱應力方面,晶體內的熱應力會隨著晶體生長的尺寸增加而上升,增加長晶的困難度。此外,當固液界面越為平坦時,其徑向溫度梯度越低,因此晶體內的熱應力隨著凸出率越低而有顯著的下降。
摘要(英) The Czochralski method is one of the major technologies used for high quality single crystal growth. Recently, this technology has been applied for industrial larger size sapphire crystal growth. In order to ensure the quality of the crystal growth, we must gain further insight into the flow behavior of the molten melt and heat transfer mechanisms in Czochralski furnace.
During the large size sapphire crystal growth, the temperature of furnace is too high to be observed in experiments directly. Therefore, numerical simulation is necessary in order to reduce the cost and time of experiments. The purpose of this thesis is to numerically investigate on thermal flow field, shape of the crystal-melt interface and thermal stress for larger sapphire crystal growth using the COMSOL Multiphysics software base on the finite element method.
The results show that the flow field is dominated by a buoyant vortex and the isotherms are distorted by the strong buoyancy force. The intensity of the vortex decreases when the power supply reduces. The crystal-melt interface would be more convex to the molten melt when the crystal grows. The crucible rotation increase the transfer of heat convection due to the enhancement of the buoyant vortex. The crystal rotation results in a forced vortex below crystal-melt interface caused by centrifugal force, more heat is transferred to crystallization front. The counter rotation between the crucible and the crystal results in the flatter crystal-melt interface and the lower crystal’s convexity. There is an optimal combination of the crystal and crucible rotation rates for each crystal growth length. The thermal stress would increase when the size of the crystal growth increase. Moreover, the thermal stress significantly decreases for the lower convexity of the crystal-melt interface due to the reduction of temperature gradient in the radial direction along the interface.
關鍵字(中) ★ 柴式長晶
★ 藍寶石晶體生長
★ 數值模擬
關鍵字(英) ★ Czochralski
★ sapphire crystal growth
★ numerical simulation
論文目次 摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 VIII
符號說明 IX
第一章 緒論 1
1-1 氧化鋁單晶簡介 1
1-2 柴氏長晶法介紹 2
1-3 文獻回顧 3
1-4 研究動機與目的 6
第二章 系統描述與數學模式 9
2-1物理統與假設 9
2-2數學模式 10
2-2-1熱流場方程式 10
2-2-2低雷諾數k-ɛ紊流模式 13
2-2-3熱應力場方程式 15
第三章 數值方法 18
3-1無因次參數分析 18
3-2離散座標法 19
3-3反應曲面法 19
3-4固化理論分析 20
3-5網格測試與收斂測試 20
3-6求解分析步驟 21
第四章 結果與討論 26
4-1 CZ法生長大尺寸晶體熱流場分析 26
4-2 坩堝旋轉對熱流場之影響 28
4-3 晶體旋轉對熱流場之影響 28
4-4 晶體與坩堝反向旋轉對熱流場之影響 29
4-5 轉速最佳化分析 30
4-6 熱應力分析 31
第五章 結論與未來研究方向 57
參考文獻 59
參考文獻 [1] V. Pishchik, L. A. Lytvynov, and E. R. Dobrovinskaya, Sapphire Material, Manufacturing, Applications, 2009.
[2] J. Czochralski, "A new method for the measurement of the crystallization rate of metals," Zeitschrift für Physikalische Chemie, vol. 92, pp. 219-221, 1918.
[3] G. K. Teal, M. Sparks, and E. Buehler, "Growth of Germanium Single Crystals Containing p-n Junctions," Physical Review, vol. 81, pp. 637-637, 1951.
[4] T. Tsukada, N. Imaishi, and M. Hozawa, "Theoretical study of the flow and temperature fields in cz single crystal growth," Journal of Chemical Engineering of Japan, vol. 21, pp. 184-191, 1988.
[5] T. Tsukada, K. Kakinoki, M. Hozawa, N. Imaishi, K. Shimamura, and T. Fukuda, "Numerical and experimental studies on crack formation in LiNbO3 single crystal," Journal of Crystal Growth, vol. 180, pp. 543-550, 1997.
[6] N. Miyazaki, H. Uchida, T. Tsukada, and T. Fukuda, "Quantitative assessment for cracking in oxide bulk single crystals during Czochralski growth: development of a computer program for thermal stress analysis," Journal of Crystal Growth, vol. 162, pp. 83-88, 1996.
[7] M. Kobayashi, T. Tsukada, and M. Hozawa, "Effect of internal radiation on thermal stress fields in CZ oxide crystals," Journal of Crystal Growth, vol. 241, pp. 241-248, 2002.
[8] M. H. Tavakkoli and H. Wilke, "Numerical study of induction heating and heat transfer in a real Czochralski system," Journal of Crystal Growth, vol. 275, pp. e85-e89, 2005.
[9] M. H. Tavakoli, "Numerical study of heat transport and fluid flow during different stages of sapphire Czochralski crystal growth," Journal of Crystal Growth, vol. 310, pp. 3107-3112, 2008.
[10] M. H. Tavakoli and H. Wilke, "Numerical investigation of heat transport and fluid flow during the seeding process of oxide Czochralski crystal growth Part 1: non-rotating seed," Crystal Research and Technology, vol. 42, pp. 544-557, 2007.
[11] M. H. Tavakoli and H. Wilke, "Numerical investigation of heat transport and fluid flow during the seeding process of oxide Czochralski crystal growth Part 2: rotating seed," Crystal Research and Technology, vol. 42, pp. 688-698, 2007.
[12] M. H. Tavakoli, H. Wilke, and N. Crnogorac, "Influence of the crucible bottom shape on the heat transport and fluid flow during the seeding process of oxide Czochralski crystal growth," Crystal Research and Technology, vol. 42, pp. 1252-1258, 2007.
[13] M. H. Tavakoli, A. Ojaghi, E. Mohammadi-Manesh, and M. Mansour, "Influence of coil geometry on the induction heating process in crystal growth systems," Journal of Crystal Growth, vol. 311, pp. 1594-1599, 2009.
[14] M. H. Tavakoli, E. Mohammadi-Manesh, and A. Ojaghi, "Influence of crucible geometry and position on the induction heating process in crystal growth systems," Journal of Crystal Growth, vol. 311, pp. 4281-4288, 2009.
[15] M. Asadian, S. H. Seyedein, M. R. Aboutalebi, and A. Maroosi, "Optimization of the parameters affecting the shape and position of crystal–melt interface in YAG single crystal growth," Journal of Crystal Growth, vol. 311, pp. 342-348, 2009.
[16] C. W. Lu and J. C. Chen, "Numerical simulation of thermal and mass transport during Czochralski crystal growth of sapphire," Crystal Research and Technology, vol. 45, pp. 371-379, 2010.
[17] C. W. Lu, J. C. Chen, C. H. Chen, C. H. Chen, W. C. Hsu, and C. M. Liu, "Effects of RF coil position on the transport processes during the stages of sapphire Czochralski crystal growth," Journal of Crystal Growth, vol. 312, pp. 1074-1079, 2010.
[18] F. J. Bruni, C. M. Liu, and J. Stone-Sundberg, "Will Czochralski Growth of Sapphire Once Again Prevail?," Acta Physica Polonica A, vol. 124, pp. 213-218, 2013.
[19] C. H. Chen, J. C. Chen, C. W. Lu, and C. M. Liu, "Effect of power arrangement on the crystal shape during the Kyropoulos sapphire crystal growth process," Journal of Crystal Growth, vol. 352, pp. 9-15, 2012.
[20] H. S. Fang, Y. Y. Pan, L. L. Zheng, Q. J. Zhang, S. Wang, and Z. L. Jin, "To investigate interface shape and thermal stress during sapphire single crystal growth by the Cz method," Journal of Crystal Growth, vol. 363, pp. 25-32, 2013.
[21] M. J. Hur, X. F. Han, D. S. Song, T. H. Kim, N. J. Lee, Y. J. Jeong, et al., "The influence of crucible and crystal rotation on the sapphire single crystal growth interface shape in a resistance heated Czochralski system," Journal of Crystal Growth, vol. 385, pp. 22-27, 2014.
[22] M. S. Akselrod and F. J. Bruni, "Modern trends in crystal growth and new applications of sapphire," Journal of Crystal Growth, vol. 360, pp. 134-145, 2012.
[23] D. Vizman, I. Nicoara, and G. Müller, "Effects of temperature asymmetry and tilting in the vertical Bridgman growth of semi-transparent crystals," Journal of Crystal Growth, vol. 212, pp. 334-339, 2000.
[24] P. D. Thomas, J. J. Derby, L. J. Atherton, R. A. Brown, and M. J. Wargo, "Dynamics of liquid-encapsulated czochralski growth of gallium arsenide: Comparing model with experiment," Journal of Crystal Growth, vol. 96, pp. 135-152, 1989.
[25] B. R. SEO., "A NUMERICAL STUDY OF BUOYANT TURBULENT FLOWS USING LOW-REYNOLDS NUMBER k-e MODEL " 2001.
[26] P. Jagadeesh and K. Murali, "Application of low-Re turbulence models for flow simulations past underwater vehicle hull forms," Journal of Naval Architecture and Marine Engineering, vol. 2, p. 14, 2009.
[27] J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices Paperback 1985.
[28] T. Vodenitcharova, L. C. Zhang, I. Zarudi, Y. Yin, H. Domyo, T. Ho, et al., "The effect of anisotropy on the deformation and fracture of sapphire wafers subjected to thermal shocks," Journal of Materials Processing Technology, vol. 194, pp. 52-62, 2007.
[29] D. C. Harris, Materials for Infrared Windows and Domes: Properties and Performance. SPIE Press, 1999.
[30] W. Frei, "Which Turbulence Model Should I Choose for my CFD Application?," COMSOL, Inc., 2013.
[31] G. E. P. Box, Empirical Model-Building and Response Surfaces, 1987.
[32] PITOTECH, "Comsol Multiphysics user Manual."
[33] G. C. Rey, "Numerical methods for radiative heat transfer," 2006.
[34] A. S. Jamaluddin and P. J. Smith, "Predicting Radiative Transfer in Axisymmetric Cylindrical Enclosures Using the Discrete Ordinates Method," Combustion Science and Technology, vol. 62, pp. 173-186, 1988.
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明