博碩士論文 102323064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.129.39.55
姓名 林文盛(Wen-Sheng Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 MOCVD近耦合噴淋式反應腔體中吸附反應對於噴嘴處阻塞之影響
相關論文
★ 以流體式數值模擬直流磁控電漿濺鍍系統之磁場影響★ 利用鉻薄膜為濕蝕刻遮罩製備石英奈米針狀結構之研究
★ 石英蝕刻微結構之非等向性研究★ 具有微結構之石英表面聲波感測器之共振頻率數值模擬與分析
★ 以數值模擬方法探討電感耦合式電漿輔助製程之氣體溫度與腔體熱分析★ 石英柱狀微結構濕蝕刻製程之研究
★ 利用暫態熱微影技術製備高分子微結構★ 石英柱狀微結構之表面聲波感測器之研製與特性分析
★ 利用電子束微影製作高密度石英柱狀結構★ 利用暫態熱線法之微型熱傳導係數量測元件之設計與製備
★ 石英微結構對表面接觸角與潤濕性影響之研究★ 石英奈米針狀結構表面之潤濕性及遲滯性研究
★ 利用示差掃描熱量分析與雷射閃光熱擴散法 研究牛血清蛋白之熱變性★ MOCVD噴淋式腔體沉積模擬與進氣系統分析
★ The Deposition and Microstructure of Tungsten Oxide Films by Physical Vapor Deposition★ 利用聲子波茲曼方程式分析非對稱多孔矽之熱傳性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 金屬有機化學氣相沉積法(Metal Organic Chemical Vapor Deposition, MOCVD)具有良好的磊晶薄膜均勻性及大量生產等優點,為LED製程主要的磊晶技術。MOCVD設備中進氣系統為一相當關鍵的模組,其中近耦合噴淋式反應腔體因該機台具有較低的腔體高度和如蓮蓬頭般的多孔洞進氣系統設計,使得流場穩定和物種分佈均勻,具有較寬的製程裕度,並能減少金屬有機化合物的使用量,不過這樣的設計卻容易使進氣系統噴嘴處阻塞。本研究將利用數值模擬探討噴嘴處因反應物種吸附所造成的阻塞情況,模擬一個直徑20 cm的腔體,並考量腔體內的熱流場、質量傳輸現象及化學反應,調整進氣流速及進氣比例,觀察反應物種吸附率的變化,最後進行進氣噴嘴的改良設計。
首先探討進氣流速以及進氣比例的改變對於噴嘴處吸附率的影響,研究發現當TMG進氣比例越高,噴嘴處吸附率和載盤長率皆會增加;隨著進氣流速增加,噴嘴處的吸附率降低,而載盤上的長率呈現線性成長的趨勢。此外,結果顯示造成噴嘴處阻塞的主要吸附物種為TMGNH3。
接著對進氣噴嘴進行改良設計,在不影響載盤上磊晶薄膜成長的基準之下,探討噴嘴處反應物種吸附情形。在進氣噴嘴倒角的情況下,載盤上的長率僅減少約0.4%,而噴嘴處的吸附率也減少約5.3%,有助於改善噴嘴處阻塞的情況。最後在同心圓進氣設計的結果可以發現,噴嘴處吸附率降低約36.3%,但是載盤長率因為多通入大量H2的影響而減少約22.6%,必須提高TMG進氣比例才能將原有的長率補回。不過增加同心圓進氣設計之後,對稱軸附近的長率變的較不均勻,需要適當調整對稱軸附近的H2進氣管流速,長率才會趨於均勻的狀態。因此,同心圓進氣噴嘴設計也是能改善噴嘴處阻塞的情況。
摘要(英) Metal organic chemical vapor deposition(MOCVD) has good epitaxy film uniformity and is suitable for mass production. It is the main fabrication process for the LED. MOCVD equipment, the source gas inlet system is very critical. The close coupled showerhead(CCS) is one the important inlet system design. It uses multiple holes, to make the flow uniform and stable, and thus increase uniformity of the deposit film. The process has large processing margin and can reduce the amount of the metal organic compound. The CCS design, however, is easy to cause clogging of the inlet orifices. In this thesis, we numerical simulate the clogging rate of the orifices of a CCS reactor due to adsorption of the reactive species. The simulation takes accounts of fluid dynamics, heat and mass transports, and chemical reactions, and the flow, temperature, and species distributions are obtained. The deposition rate and the adsorption rate then can be calculated to evaluate the deposition performance and the clogging degree. Finally, a modified inlet system design is proposed.
In the study, we first, consider the flow rate effects on the inlet nozzle adsorption rate. It is found that the higher proportion of TMG in the inlet gas source, the higher the adsorption rate at the inlet nozzle and the higher the growth rate at the susceptor. When the flow rate increases, the adsorption rate at inlet nozzle decreases, but the growth rate at susceptor enhances. Furthermore, the results show the main species causing nozzle clogging is TMGNH3.
In the inlet nozzle design, the chamfered nozzle and the concentric nozzle designs are studied. In the case of the chamfered nozzle, the growth rate on the susceptor reduces 0.4%, while the adsorption rate at the nozzle reduces 5.3%. The effectiveness of using chamfers are not remarkable. In the concentric inlet design, it is found that the adsorption rate at the nozzle reduces 36.3%, while the growth rate on the susceptor decreases 22.6% due to the dilution of additional H2. Also, the growth rate near the symmetry axis becomes less uniform. By adjusting the flow rate of the H2 in the concentric nozzles, the situation can be alleviate. Overall, the concentric inlet nozzle design is promising in reducing the nozzle clogging.
關鍵字(中) ★ 金屬有機化學氣相沉積法
★ 近耦合噴淋式反應腔體
★ 吸附率
關鍵字(英) ★ MOCVD
★ Showerhead
★ Adsorption Rate
論文目次 摘 要 i
Abstract ii
誌 謝 iv
目 錄 v
圖目錄 viii
表目錄 xiii
符號對照表 xiv
第一章 緒論 1
1-1 研究背景 1
1-2 MOCVD薄膜磊晶生長 2
1-2-1 氣相反應過程 2
1-2-2 吸附作用 3
1-2-3 薄膜沉積過程 4
1-3 MOCVD機台介紹 5
1-3-1 水平式進氣系統 5
1-3-2 垂直式進氣系統 6
1-4 文獻回顧 8
1-5 研究動機與目的 14
第二章 基礎理論 15
2-1 腔體流場理論 15
2-2 腔體熱傳理論 16
2-3 腔體質傳理論 17
2-4 化學反應工程 17
2-4-1 化學反應路徑 17
2-4-2 化學反應速率 18
2-5 吸附反應 19
2-6 統御方程式 19
第三章 研究方法 21
3-1 研究架構 21
3-2 模擬參數 23
3-2-1 氣體特性 23
3-2-2 化學反應 23
3-2-3 溫度設定 25
3-2-4 進氣流速 25
3-2-5 進氣比例 27
3-3 腔體模型建立 28
3-3-1 基本假設 28
3-3-2 邊界條件設定 28
3-4 評估方式建立 30
3-4-1 噴嘴處阻塞評估計算 30
3-4-2 磊晶薄膜生長速率 31
3-4-3 奈米粒子的影響 31
3-5 模擬流程 34
3-6 網格收斂測試 36
第四章 結果與討論 38
4-1 近耦合噴淋式反應腔體模型驗證 38
4-2 製程參數對於噴嘴處吸附率及載盤長率的影響 42
4-2-1 進氣流速的影響 42
4-2-2 進氣比例的影響 46
4-3 進氣噴嘴倒角設計 52
4-3-1 進氣噴嘴全管倒角 52
4-3-2 TMG進氣管倒角 60
4-3-3 不同倒角設計的比較 68
4-4 同心圓進氣噴嘴設計 70
4-4-1 調整同心圓進氣噴嘴流速 70
4-4-2 調整TMG進氣比例補回載盤長率 76
4-4-3 調整對稱軸同心圓進氣噴嘴流速 78
第五章 結論與未來展望 80
5-1 結論 80
5-2 未來展望 81
參考文獻 82
參考文獻 [1] 史光國, "半導體發光二極體及固體照明", 全華圖書, 2010
[2] 羅文雄, "半導體製造技術", 滄海圖書資訊股份有限公司, 2011
[3] K. Kim and S. K. Noh, "Reactor design rules for GaN epitaxial layer growths on sapphire in metal–organic chemical vapour deposition," Semiconductor Science and Technology, vol. 15, pp. 868-874, 2000.
[4] M. Razeghi and M. Henini, Optoelectronic Devices: III Nitrides, 1st ed, London, UK: ELSEVIER, 2004, ch. 4.
[5] M. Mitrovic, A. Gurary and L. Kadinski, "On the flow stability in vertical rotating disc MOCVD reactors under a wide range of process parameters," Journal of Crystal Growth, vol. 287, pp. 656-663, 2006.
[6] R. Zuo, H. Yu, N. Xu and X. He, "Influence of Gas Mixing and Heating on Gas-Phase Reactions in GaN MOCVD Growth," Journal of Solid State Science and Technology, vol. 1, no. 1, pp. 46-53, 2012.
[7] J. Sun, J. M. Redwing and T. F. Kuech, "Model Development of GaN MOVPE Growth Chemistry for Reactor Design," Journal of Electronic Materials, vol. 29, no.1, 2000.
[8] C. Y. Shin, B. J. Baek, C. R. Lee, B. Pak, J. M. Yoon and K. S. Park, "Numerical analysis for the growth of GaN layer in MOCVD reactor," Journal of Crystal Growth, vol. 247, pp. 301-312, 2003.
[9] D. Sengupta, S. Mazumder, W. Kuykendall and S. A. Lowry, "Combined ab initio quantum chemistry and computational fluid dynamics calculations for prediction of gallium nitride growth," Journal of Crystal Growth, vol. 279, pp. 369-382, 2005.
[10] M. Dauelsberg, C. Martin, H. Protzmann, A. R. Boyd, E. J. Thrush, J. Kappeler, M. Heuken, R. A. Talalaev, E. V. Yakovlev and A. V. Kondratyev, "Modeling and process design of III-nitride MOVPE at near-atmospheric pressure in close coupled showerhead and planetary reactors," Journal of Crystal Growth, vol. 298, pp. 418-424, 2007.
[11] Z. Shuquan, R. Xiaomin, H. Yongqing, H. Hui and W. Qi, "Numerical studies on transport phenomena in LP-MOCVD reactor," Chinese Science Bulletin, vol. 55, no. 6, pp. 560−566, 2010.
[12] L. Hui, "Mass transport analysis of a showerhead MOCVD reactor," Journal of Semiconductors, vol. 32, no. 3, 2011.
[13] J. R. Brock, "On the theory of thermal forces acting on aerosol particles, " Journal of Colloid Science, vol. 17, no.8, pp. 768-780, 1962.
[14] J. R. Creighton, G. T. Wang and M. E. Coltrin, "Fundamental chemistry and modeling of group-III nitride MOVPE," Journal of Crystal Growth, vol. 298, 2007.
[15] L. Ruolei, Y. Ruichang, Y. Changfu and Z. Lei, Z. Tao, "Kinematic characteristics and thermophoretic deposition of inhalable particle in temperature gradient field," J. CIESC., vol. 60, no. 7, pp. 1623-1628, 2009.
[16] K. Obara, Z. Fu, M. Arima, T. Yamada and T. Fujikawa, "Collision processes between sputteredparticles on high speed rotating substrate and atomic mass dependence of sticking coefficient," Journal of Crystal Growth, vol. 237–239, pp. 2041-2045, 2002



[17] R. P. Parikh, R. A. Adomaitis, M. E. Aumer, D. P. Partlow, D. B. Thomson and G. W. Rubloff, "Validating gallium nitride growth kinetics using a precursor delivery showerhead as a novel chemical reactor," Journal of Crystal Growth, vol. 296, pp. 15-26, 2006.
[18] D. Cai, W. J. Mecouch, L. L. Zheng, H. Zhang and Z. Sitar, "Thermodynamic and kinetic study of transport and reaction phenomena in gallium nitride epitaxy growth," International Journal of Heat and Mass Transfer, vol. 51, pp. 1264-1280, 2008.
[19] C. Theodoropoulos, T. J. Mountziaris, H. K. Moffat and J. Han, "Design of gas inlets for the growth of gallium nitride by metalorganic vapor phase epitaxy," Journal of Crystal Growth, vol. 217, pp. 65-81, 2000.
[20] S. Heikman, S. Keller and U. K. Mishra, "Vapor-phase epitaxy of gallium nitride by gallium are discharge evaporation," Journal of Crystal Growth, vol. 293, pp. 335-343, 2006.
[21] K. Reinhardt and W. Kern, Handbook of Silicon Wafer Cleaning Technology, 2nd ed, New Jersey, USA:William Andrew, 2008. ch. 3.
指導教授 洪銘聰(Ming-Tsung Hung) 審核日期 2016-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明