博碩士論文 102323065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:3.138.116.17
姓名 沈進添(Chin-Tien Shen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 燃料電池觸媒開發與應用研究
(Development and Application of Fuel Cell Catalysts)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-17以後開放)
摘要(中) 本研究主要探討利用醇類還原法製作連續且規則結構之多孔碳(OPC,
Ordered Porous Carbon) 作為陰極觸媒載體及摻雜第二金屬與鉑(Pt,
Platinum) 形成合金觸媒應用於質子交換膜燃料電池(Proton Exchange Membrane Fuel Cell, PEMFC),進而提升觸媒利用率及提升氧化還原活性(ORR, Oxygen Reduction Reaction),此外,利用固相反應法(Solid State Reaction, SSR)製作傳統及合金陽極應用在質子傳輸型固態氧化物燃料電池(Proton Conducting Solid Oxide Fuel Cell, P-SOFC),進而提升材料之機械性質、催化活性、導電性、抗碳沉積能力及氧化還原穩定性。在PEMFC 研究方面,提升觸媒利用率與效能是極為重要課題,目前PEMFC 之觸媒載體大多使用碳黑為主,但由於碳黑會使觸媒形成孤島效應,導致觸媒利用率降低,因此使用OPC 作為載體,進而改善此一缺點,並且選用錫(Sn, Stannum)作為PtSn/C 合金觸媒,藉以降低Pt 使用量,達成降低PEMFC 之生產成本,並且在酸性環境下,能提升電池之ORR 活性。實驗先以Pt/C 為基材,比較Sn 摻雜,隨後再將載體換成OPC,進行電化學與長時間穩定性測試,目標是以少許Sn 及OPC 取代Pt 及碳黑,達到比傳統以純Pt 金屬為主之陰極具有較佳之電化學性能及長時間穩定性。在SOFC 研究方面,先以NiO-BCY 為基材,比較Zr 摻雜,進行氧化還原前後之陽極材料,量測則分為晶相鑑定、微觀結構、觸媒活性及機械性質分析;隨後以合金陽極量測則分為成份比例、晶相鑑定、微觀結構、機械性質及電性分析,藉由調整鎳鈷合金(Nickel Cobolt Alloy, NiCo Alloy)的煆燒溫度、煆燒時間及改變NiCo Alloy 比例,目標是以少許鈷元素(Cobalt,Co)與鎳元素(Nickel, Ni)置換之陽極達到比純Ni 金屬為主之陽極具有較佳
之電性、抗碳沉積能力及氧化還原循環穩定性。此外,藉由調整鎳銅合金(Nickel Copper Alloy, NiCu Alloy)的煆燒溫度、煆燒時間及改變NiCu Alloy比例,量測合金陽極之晶相鑑定、微觀結構及電性分析。研究結果顯示,利用醇類還原法製備PtSn/OPC 於PEMFC,其觸媒分散性良好,粒徑為2.7 nm,並且Sn 合金及OPC 載體不僅可以修飾Pt 及Sn之表面電化學組態,而且會影響Pt 之d 帶空缺。此外,由XPS 及XANES結果顯示,經過長時間穩定性測試前後,Sn 合金及OPC 可以抑制Pt 氧化,
進而提升ORR 活性。利用SSR 製備Ni-BCZY 陽極材料,經過多次氧化還原後,會提升觸媒活性及改善機械性質。此外,藉由調整NiCo 合金粉末煆燒溫度及煆燒時間會改變NiCo 合金晶粒大小及導電度。當Ni0.9Co0.1合金之煆燒溫度為1000 ºC及3 小時,操作溫度為600 ºC 時,Ni0.9Co0.1-BCZY 陽極之導電度為2623.5 S/cm 。當煆燒溫度及煆燒時間分別固定為1000 ºC 及1 小時,Ni0.9Co0.1-BCZY 陽極有最佳的電子導性為2669.8 S/cm 及熱膨脹係數為15.7× 10-6 K-1,相較於Ni-BCZY 陽極來的好。隨後改變NiCo 成份比例,當Ni :Co 之莫爾比為9 : 1 時,Ni0.9Co0.1-BCZY 陽極具有相當優異之導電度,其導
電度比Ni-BCZY 陽極(2354 S/cm)高,當Ni : Co 之莫爾比為7 : 3 時,其熱膨脹係數為13.6 × 10-6 K-1、有最佳的抗碳沉積能力及經過氧化還原循環後有最佳機械強度。另一方面,藉由調整NiCu 合金粉末煆燒溫度及煆燒間會改變NiCu 合金晶粒大小及導電度。當Ni0.9Cu0.1 合金之煆燒溫度為700 ºC及3 小時,操作溫度為600 ºC 時,Ni0.9Cu0.1-BCZY 陽極之導電度為2002.1 S/cm。當煆燒溫度及煆燒時間分別固定為700 ºC 及1 小時,Ni0.9Cu0.1-BCZY陽極有最佳的電子導性為2204.7 S/cm。隨後改變NiCu 成份比例,當Ni : Cu之莫爾比為9 : 1 時,Ni0.9Cu0.1-BCZY 陽極具有相當優異之導電度。
摘要(英) In this research, Alcohol reduction method is used to prepare continuous and ordered structure of porous carbon as catalyst support for proton exchange membrane fuel cell (PEMFC) to enhance the catalyst utilization and improve electron transfer. Pt-M alloy catalysts have higher oxidation reduction reaction(ORR) activity than pure Pt catalysts. In addition, solid state reaction (SSR)synthesis process is chosen to develop a traditional anode and an alloy catalyst as an anode in proton conducting solid oxide fuel cell (P-SOFC). The improvement of mechanical properties, catalytic activity, conductivity, carbon-resistant ability and redox stability. In the aspect of PEMFC, increasing catalyst utilization and activity are very important. Currently, carbon black is widely used as the catalyst support.
Although using carbon black to support catalyst can improve catalyst dispersion and catalyst activity, it results in loss of catalytic use due to occasional island
formation. Therefore, ordered porous carbon (OPC) is used as the catalyst support for fuel cell application due to its large surface area and continuous structure. The noble metal, Sn, is a promising candidate to replace Pt. Addition of Sn into Pt/C not only reduces cost by lowering Pt loading, but also increase ORR activity in acidic environment of fuel cell. Three catalysts are discussed during electrochemical performance and long term stability. The aim is to use little Sn and OPC to replace Pt and carbon black. The best electrochemical
performance and long term stability of catalysts are obtained compared with pure Pt catalysts.
In the aspect of SOFC, NiO-BCY anode as the based compared with Zr doped NiO-BCY. Anode is measured to phase identification, microstructure, catalytic activity and mechanical properties. After that, anode alloy is characterized to identify the ratio of components, phase identification, microstructure, mechanical properties and electrical conductivity. The aim of this research is to synthesize a higher electrical conducting anode catalyst for P-SOFC, when compared to the traditional NiO anode. Incorporation of Co(cobalt) in Ni (nickel) can enhance the electrical properties of anode in P-SOFC.
Several variations in the ratio of alloy (Ni : Co) and calcining parameters such astemperature, time would enhance the electrical conductivity, carbon deposition
resistance and the redox cycle stability of the catalyst. This is better than traditional NiO catalyst. In addition, Several variations in the ratio of alloy (Ni :
Cu) and calcining parameters such as temperature, time would improve the electrical conductivity The results show that PtSn alloy nanoparticles with a size of 2.7 nm are deposited on OPC by using alcohol reduction method. The synergistic effect of Sn alloying and OPC support can not only modify the surface chemical states of
Pt and Sn but also affect the d-band vacancy of Pt. The X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES)
reveal that the oxidation of Pt is suppressed in PtSn/OPC, thus promoting the ORR performance before and after accelerated durability test. SSR is used to prepare Ni-BCZY and the catalytic activity, mechanical properties are improved during redox cycling. In addition, variation of calcined temperature and calcined time can change the particle size and electrical conductivity. Initially, we investigated the best appropriate calcination
temperature and duration, and then the ratio of Ni : Co is varied. Experimental
results show that the NiCo alloy synthesized with a molar ratio of 9 : 1 (Ni : Co) calcined at 1000 ºC for 1 hour is exhibiting an electrical conductivity of 2669.8
S/cm at an operating temperature of 600 ºC with a TEC of 15.7 × 10-6 K-1. The best carbon deposition resistance, stability in redox cycle and TEC of 13.6 × 10-6
K-1 is observed for the Ni : Co molar ratio of 7 : 3. The NiCo anode hasrelatively good electrical conductivity than Ni anode (2354 S/cm). This work can help to replace the traditional NiO anode in P-SOFC. On the other hand, results show that the NiCu alloy synthesized with a molar ratio of 9 : 1 (Ni : Cu) calcined at 700 ºC for 1 hour is exhibiting an electrical conductivity of 2204.7 S/cm at an operating temperature of 600 ºC.
關鍵字(中) ★ 多孔碳
★ 氧化還原反應
★ 合金
★ 碳沉積
★ 氧化還原循環
★ 燃料電 池
關鍵字(英) ★ Ordered porous carbon
★ Oxygen reduction reaction
★ Alloy
★ Carbon deposition
★ Redox cycle
★ Fuel cell
論文目次 中文摘要 i
Abstract iii
誌謝 vi
目錄 vii
圖目錄 xi
表目錄 xvi
一、緒論 1
1-1 前言 1
1-2 燃料電池 (Fuel cell, FC) 2
1-2-1 燃料電池的種類及其特徵 2
1-2-2 燃料電池的效率 4
1-3 質子交換膜燃料電池 5
1-3-1 質子交換膜燃料電池之觸媒層 7
1-3-2 陽極觸媒 8
1-3-3 陰極觸媒 8
1-4 固態氧化物燃料電池 9
1-4-1 P-SOFC及O-SOFC 10
1-4-2 P-SOFC工作原理 12
1-4-3 P-SOFC材料之選用 13
1-4-4 P-SOFC電解質 14
1-4-5 P-SOFC陽極材料 18
1-4-6 P-SOFC陰極材料 21
1-5 研究目的 23
二、文獻回顧 25
2-1 多孔碳應用於PEMFC 25
2-2 PtSn觸媒應用於PEMFC 25
2-3 SOFC陽極材料之氧化還原穩定性問題 26
2-4 改變煆燒溫度對於SOFC材料性質的影響 29
2-5 改變NiCo合金比例對於SOFC陽極材料性質的影響 31
2-6 改變NiCu合金比例對於SOFC陽極材料性質的影響 33
2-7 甲烷氣體對SOFC陽極材料之碳沉積影響 33
三、研究方法與實驗步驟 36
3-1 實驗步驟 36
3-1-1 多孔碳製備 36
3-1-2 Pt觸媒製備 37
3-1-3 PtSn合金觸媒製備 38
3-1-4 Ni-BaCe0.8-xZrxY0.2O3-δ粉末製備 38
3-1-5 Ni1-xCox-BaCe0.6Zr0.2Y0.2O3-δ及Ni1-xCux-BaCe0.6Zr0.2Y0.2O3-δ粉末配置….. 41
3-2 實驗樣品 43
3-3 實驗儀器設備 45
3-3-1 波長式X光螢光光譜分析儀(Wavelength Dispersive X-ray Fluorescence, WD-XRF) 45
3-3-2 元素分析儀(Elemental Analysis, EA) 46
3-3-3 X光繞射分析儀(X-ray Diffraction, XRD) 47
3-3-4 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 48
3-3-5 氫氣溫度程控還原儀(Hydrogen Temperature Programmed Reduction, H2-TPR) 49
3-3-6 機械分析儀(Thermal Mechanical Analyzer, TMA) 50
3-3-7 導電度阻抗儀(Conductivity Resistance Measurement) 51
3-3-8 維克氏硬度試驗機(Vickers Hardness Testing Machine) 52
3-3-9 拉曼光譜儀(Raman Spectrometer, Raman) 53
3-3-10 同步熱差分析儀(Simultaneous Thermal Analysis, STA) 54
3-3-11 X光光電子能譜儀(X-ray Photoelectron Spectroscopy) 55
3-3-12 氮氣吸附孔隙儀(Accelerated Surface Area and Porosimetry, ASAP)….. 56
3-3-13 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)…… 57
3-3-14 X光近緣吸收光譜(X-ray Absorption Near Edge Structure, XANES)… 58
3-4 觸媒電性測試 59
3-4-1 循環伏安法(Cyclic Voltammetry, CV) 59
3-4-2 線性掃描伏安法(Linear Sweep Voltammetry, LSV) 59
3-4-3 電化學加速耐久性測試(Electrochemical Accelerated Durability Test, ADT) 60
四、結果與討論 62
4-1 Pt/C, PtSn/C及PtSn/OPC觸媒之性質分析 62
4-1-1 矽球顆粒與多孔碳孔徑 62
4-1-2 Pt/C, PtSn/C及PtSn/OPC之觸媒分析 63
4-2 Ni-BCY及Ni-BCZY陽極材料經過氧化還原循環後之性質分析……. 72
4-2-1 X光繞射分析 72
4-2-2 觸媒活性分析 74
4-2-3 表面形貌 76
4-2-4 熱機械分析 77
4-3 不同煆燒溫度對NiCo陽極的影響 79
4-3-1 不同煆燒溫度之NiCo陽極樣品命名 79
4-3-2 不同煆燒溫度對NiCo陽極材料比例、形貌及導電度之影響.............. 80
4-4 不同煆燒時間對NiCo陽極材料之影響 85
4-4-1 不同煆燒時間之NiCo陽極樣品命名 85
4-4-2 不同煆燒時間對NiCo陽極材料比例、形貌及導電度之影響……….. 85
4-5 不同比例NiCo合金對陽極材料之影響 90
4-5-1 不同比例NiCo合金之樣品命名 90
4-5-2 不同比例NiCo合金對陽極形貌、導電度、硬度及熱膨脹係數之影響.. 90
4-6 不同比例NiCo合金陽極之碳沉積實驗 99
4-7 不同比例NiCo合金陽極之氧化還原循環實驗 105
4-8 不同煆燒溫度對NiCu陽極的影響 113
4-8-1 不同煆燒溫度之NiCu陽極樣品命名 113
4-8-2 不同煆燒溫度對NiCu陽極材料形貌及導電度之影響 113
4-9 不同煆燒時間對NiCu極材料之影響 118
4-9-1 不同煆燒時間之NiCu陽極樣品命名 118
4-9-2 不同煆燒時間對NiCu陽極形貌及導電度之影響 118
4-10 不同比例NiCu合金對陽極材料之影響 122
4-10-1 不同比例NiCu合金之樣品命名 122
4-10-2 不同比例NiCu合金對陽極形貌及導電度之影響 122
五、結論 127
六、未來工作 128
七、參考文獻 130
圖目錄
圖1-1、燃料電池原理示意圖[4]。 2
圖1-2、燃料電池原理示意圖。 4
圖1-3、質子交換膜燃料電池結構示意圖[4]。 6
圖1-4、質子交換膜燃料觸媒層結構示意圖。 7
圖1-5、Pt擔載於碳載體上之示意圖,A為Pt聚集,B為Pt稀少。 7
圖1-6、SOFC工作原理示意圖。 10
圖1-7、(a) P-SOFC及(b) O-SOFC之工作原理示意圖[11]。 11
圖1-8、鈣鈦礦晶體結構(ABO3),紅、灰及藍球分別為A、B陽離子及氧離子[15]。 15
圖1-9、各類質子導體之導電度比較圖[20]。 16
圖1-10、摻雜Zr及Y到BaCeO3之(a) 機械穩定性、(b) 化學穩定性與(c)質子導性[26,27]。 18
圖1-11、P-SOFC陽極之H2催化反應,(a) 以金屬Ni為例及(b) 以Ni-質子導體陽極為例[31]。 20
圖2-1、O-SOFC陽極材料之氧化還原非穩定性之基本機制。(a) 燒結後狀態、(b)(c) 經過短期及長期操作下的狀態及(d) 經過氧化還原之後,Ni及電解質之間產生裂縫[58]。 27
圖2-2、Ni-YSZ陽極材料在不同等溫氧化還原循環下,隨著時間改變之相對厚度變化[59]。 28
圖2-3、Ni-BZY/BCZY之SEM圖,(a) 燒結後斷面、(b) 經過3次氧化還原斷面及(c)(d) 經過3次氧化還原表面[66]。 29
圖2-4、(a) 陽極材料中不同煆燒溫度YSZ陶瓷之阻抗與溫度圖及(b) 各樣品導電度在不同溫度下之示意圖[67]。 30
圖2-5、Ni-SDCx陽極材料之SDC在不同煆燒溫度,(a) x = 0 °C、(b) x = 600 °C、(c) x = 800 °C及(d) x = 1000 °C[69]。 30
圖2-6、Ni1-xCox-GDC(x = 0.1, 0.15及0.2)陽極材料,(a) 碳沉積量及(b) 在不同氣氛下之極化阻抗[73]。 31
圖2-7、Ni1-xCox-SDC(x = 0.05, 0.1及0.2)陽極材料,(a) 碳沉積量、(b) 長時間穩定性、(c) 燃料通以CH4之I-V曲線及(d) 燃料通以H2之I-V曲線[79]。 32
圖2-8、在800 °C下通CH4後,不同合金Ni與Cu比之陽極材料巨觀表面形貌圖: (a) 0 : 1、(b) 0.1 : 0.9、(c) 0.2 : 0.8、(d) 0.5 : 0.5及(e) 1 : 0 [83]。 33
圖2-9、含碳氣體於碳奈米管狀之觸媒下進行催化反應之示意圖[84]。 34
圖2-10、碳沉積對陽極造成衰退之示意圖(D1-D4)[85]。 35
圖3-1、多孔碳製備流程圖。 37
圖3-2、Pt觸媒製備流程圖。 38
圖3-3、PtSn觸媒製備流程圖。 38
圖3-4、實驗流程圖。 39
圖3-5、氧化還原循環之流程圖,其中每一圈是由20% H2/ 80% N2、N2及20% O2/ 80% N2。 40
圖3-6、實驗流程圖。 42
圖3-7、氧化還原循環之流程圖,其中每一圈是由10% H2/ 90% N2、N2及Air。 43
圖3-8、XRF儀器分析原理架構圖[74]。 45
圖3-9、產生X光螢光示意圖[90]。 46
圖3-10、X-ray射入晶體中反射造成波程差示意圖。 48
圖3-11、導電度量測電路示意圖之(a) 兩點式;(b) 四點式。 51
圖3-12、激發光與物質碰撞之後產生雷利及拉曼散射之示意圖,hν0為激發光源的光子能量,hνm為分子振動的能量。 54
圖3-13、STA儀器架構示意圖[91]。 55
圖4-1、(a) 矽球及(b) 多孔碳之形貌圖。 63
圖4-2、(a) Pt/C, (b) PtSn/C及(c) PtSn/OPC為經過ADT前之TEM;(d) Pt/C, (e) PtSn/C及(f) PtSn/OPC為經過ADT後之TEM;(g) Pt/C, (h) PtSn/C及(i) PtSn/OPC為經過ADT前後之顆粒分布圖。 64
圖4-3、Pt/C, PtSn/C及PtSn/OPC之XRD圖。 65
圖4-4、Pt/C, PtSn/C及PtSn/OPC之XPS Pt 4f及Sn 3d圖。 66
圖4-5、Pt/C, PtSn/C及PtSn/OPC之XANES Pt LⅢ圖。 67
圖4-6、Pt/C, PtSn/C及PtSn/OPC經過ADT前後之LSV曲線。 68
圖4-7、Pt/C, PtSn/C及PtSn/OPC之CV曲線。 69
圖4-8、(a) Pt/C, (b) Pt-Sn/C, (c) Pt-Sn/OPC為不同轉速下之LSV曲線及(d) Koutecky-Levich擬合於E = 0.5 V。 70
圖4-9、Pt/C, Pt-Sn/C及Pt-Sn/OPC經過ADT前後之Tafel曲線。 71
圖4-10、NiO-BCY經過多次氧化還原之XRD圖。 73
圖4-11、NiO-BCZY經過多次氧化還原之XRD圖。 73
圖4-12、NiO-BCY經過不同氧化還原次數下之H2-TPR圖。 75
圖4-13、NiO-BCZY經過不同氧化還原次數下之H2-TPR圖。 75
圖4-14、NiO-BCY樣品經過不同氧化還原次數之SEM形貌圖,(a) 燒結後、(b) 3次、(c) 6次及(d) 10次。 76
圖4-15、NiO-BCZY樣品經過不同氧化還原次數之SEM形貌圖,(a) 燒結後、(b) 3次、(c) 6次及(d) 10次。 77
圖4-16、在800 °C下,測試NiO-BCY及NiO-BCZY樣品經過6次氧化還原之TMA圖。 78
圖4-17、傳統陽極及不同煆燒溫度NiCo陽極之XRD圖。 82
圖4-18、傳統陽極及不同煆燒溫度NiCo陽極表面之SEM圖。 82
圖4-19、傳統陽極及不同煆燒溫度NiCo陽極之橫截面SEM圖。 83
圖4-20、傳統陽極及不同煆燒溫度陽極之導電度與溫度關係圖。 84
圖4-21、傳統陽極及不同煆燒時間NiCo陽極之XRD圖。 87
圖4-22、傳統陽極及不同煆燒時間NiCo陽極表面之SEM圖。 87
圖4-23、傳統陽極及不同煆燒時間NiCo陽極之橫截面SEM圖。 88
圖4-24、傳統陽極及不同煆燒時間陽極之導電度與溫度關係圖。 89
圖4-25、摻雜不同Co比例陽極之XRD圖。 94
圖4-26、摻雜不同Co比例陽極之晶格參數。 95
圖4-27、摻雜不同比例Co比例陽極之表面SEM圖。 95
圖4-28、摻雜不同比例Co比例陽極之橫截面SEM圖。 96
圖4-29、摻雜不同Co比例陽極之導電率與溫度關係圖。 97
圖4-30、摻雜不同比例Co比例陽極之活化能。 97
圖4-31、摻雜不同Co比例陽極之硬度。 98
圖4-32、摻雜不同Co比例陽極之XPS結果。 99
圖4-33、摻雜不同Co比例陽極之經過還原(左)及碳沉積實驗(右)之拍攝照片。 101
圖4-34、摻雜不同Co比例陽極之碳沉積實驗之SEM圖。 102
圖4-35、摻雜不同Co比例陽極之碳沉積實驗碳元素Mapping圖。 102
圖4-36、碳沉積實驗陽極之Raman分析圖。 103
圖4-37、碳沉積實驗陽極之熱重分析圖。 103
圖4-38、N-BCZY經過多次氧化還原循環之XRD圖。 108
圖4-39、N9C101-BCZY經過多次氧化還原循環之XRD圖。 108
圖4-40、N8C101-BCZY經過多次氧化還原循環之XRD圖。 109
圖4-41、N7C101-BCZY經過多次氧化還原循環之XRD圖。 109
圖4-42、N-BCZY經過不同氧化還原次數之SEM形貌圖,(a) 燒結後、(b) 1次、(c) 3次(高倍率)及(d) 3次(低倍率)。 110
圖4-43、N9C101-BCZY經過不同氧化還原次數之SEM形貌圖,(a) 燒結後、(b) 1次、(c) 3次(高倍率)及(d) 3次(低倍率)。 110
圖4-44、N8C101-BCZY經過不同氧化還原次數之SEM形貌圖,(a) 燒結後、(b) 1次、(c) 3次(高倍率)及(d) 3次(低倍率)。 111
圖4-45、N7C101-BCZY經過不同氧化還原次數之SEM形貌圖,(a) 燒結後、(b) 1次、(c) 3次(高倍率)及(d) 3次(低倍率)。 111
圖4-46、不同Co比例陽極經過多次氧化還原循環之硬度圖。 112
圖4-47、傳統陽極及不同煆燒溫度NiCu陽極之XRD圖。 115
圖4-48、傳統陽極及不同煆燒溫度NiCu陽極之表面SEM圖。 115
圖4-49、傳統陽極及不同煆燒溫度NiCu陽極之橫截面SEM圖。 116
圖4-50、傳統陽極及不同煆燒溫度陽極之導電度與溫度關係圖。 117
圖4-51、傳統陽極及不同煆燒時間陽極塊材之XRD圖。 119
圖4-52、傳統陽極及不同煆燒時間NiCu陽極之表面SEM圖。 120
圖4-53、傳統陽極及不同煆燒時間NiCu陽極之橫截面SEM圖。 120
圖4-54、傳統陽極及不同煆燒時間陽極塊材之導電度與溫度關係圖。 121
圖4-55、摻雜不同Cu比例陽極塊材之XRD圖。 123
圖4-56、摻雜不同比例Cu比例陽極之表面SEM圖。 124
圖4-57、摻雜不同比例Cu比例陽極之橫截面SEM圖。 124
圖4-58、摻雜不同Cu比例陽極塊材之導電率與溫度關係圖。 125


表目錄
表1、不同種類燃料電池及個別特徵[5]。 3
表2、摻雜不同元素之效果[25]。 17
表3、粉末與藥品規格表。 43
表4、矽球的尺寸及Pt/C, PtSn/C及PtSn/OPC的表面及孔隙特徵。 63
表5、Pt/C, PtSn/C及PtSn/OPC經過ADT前後之平均顆粒大小。 64
表6、Pt/C, PtSn/C及PtSn/OPC之d-spacing。 65
表7、Pt/C, PtSn/C及PtSn/OPC之表面成份比率。 67
表8、Pt/C, PtSn/C及PtSn/OPC經過ADT前後之MA及Ik0.85。 68
表9、Pt/C, PtSn/C及PtSn/OPC之ECSA。 69
表10、Pt/C, Pt-Sn/C及Pt-Sn/OPC之電子轉移數(n)。 71
表11、在800 °C下,NiO-BCY及NiO-BCZY樣品經過6次氧化還原之CRSmax表。 78
表12、不同煆燒溫度NiCo陽極之命名。 79
表13、傳統陽極及不同煆燒溫度NiCo陽極之XRF的成份表。 81
表14、傳統陽極及不同煆燒溫度NiCo陽極之孔隙率與晶粒大小。 83
表15、在600 oC下,傳統陽極及不同煆燒溫度陽極之導電度。 84
表16、不同煆燒時間NiCo陽極之命名。 85
表17、傳統陽極及不同煆燒時間NiCo陽極之XRF的成份表。 86
表18、傳統陽極及不同煆燒時間NiCo陽極之孔隙率與晶粒大小。 88
表19、在600 oC下,傳統陽極及不同煆燒時間陽極之導電度。 89
表20、摻雜不同Co比例陽極之命名。 90
表21、摻雜不同Co比例陽極之XRF的成份表。 94
表22、摻雜不同Co比例陽極之孔隙率與晶粒大小。 96
表23、在600 oC下,傳統陽極及不同合金比例陽極之導電度。 98
表24、摻雜不同Co比例陽極之熱膨脹係數。 98
表25、摻雜不同Co比例陽極碳沉積實驗之EA碳重量比。 101
表26、TGA檢測碳沉積實驗陽極的重量損失。 104
表27、摻雜不同Co比例陽極經過多次氧化還原之命名。 105
表28、不同煆燒溫度NiCu陽極之命名。 113
表29、傳統陽極及不同煆燒溫度NiCu陽極之孔隙率與晶粒大小。 116
表30、在600 oC下,傳統陽極及不同煆燒溫度陽極之導電度。 117
表31、不同煆燒時間NiCu陽極之命名。 118
表32、傳統陽極及不同煆燒時間NiCu陽極之孔隙率與晶粒大小。 121
表33、在600 oC下,傳統陽極及不同煆燒時間陽極之導電度。 121
表34、摻雜不同Cu比例陽極之命名。 122
表35、摻雜不同Cu比例陽極之孔隙率與晶粒大小。 125
表36、在600 oC下,傳統陽極及不同合金比例陽極之導電度。 126
參考文獻 [1] https://km.twenergy.org.tw/Data/db_more?id=2529
[2] https://www.audi.com/corporate/en/company.html
[3] http://www.boeing.com/
[4] A. B. Stambouli, E. Traversa, “Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy”, Renew. Sustain. Energy Rev., Vol. 6, pp. 433-455, 2002.
[5] 黃鎮江, 燃料電池, Vol. 3, 滄海書局, 2008.
[6] Z. Shao, S. M. Halle, “A high-performance cathode for the next generation of solid-oxide fuel cells”, Nature, Vol. 431, pp. 255-258, 2004.
[7] S. C. Singhal, K. Kendall, “High-temperature solid oxide fuel cells: fundamentals, design and applications”, Elsevier, 2003.
[8] J. W. Fergus, “Electrolytes for solid oxide fuel cells”, J. Power Sources, Vol. 162, pp. 30-40, 2006.
[9] I. M. Hung, H. W. Peng, S. L. Zheng, C. P. Lin, J. S. Wu, “Phase stability and conductivity of Ba1−ySryCe1−xYxO3−δ solid oxide fuel cell electrolyte”, J. Power Sources, Vol. 193, pp. 155-159, 2009.
[10] J. Larminie, A. Dicks, “Fuel cell systems explained”, Second Edition ed: John Wiley & Sons, Ltd; 2003.
[11] S. Mclntosh, R. J. Gorte, “Direct hydrocarbon solid oxide fuel cells”, Chem. Rev., Vol. 104, pp. 4845-4866, 2004.
[12] C. Xia, M. Liu, “Novel cathodes for low‐temperature solid oxide fuel cells”, Adv. Mat., Vol. 14, pp. 521-523, 2002.
[13] S. Primdahl, “Nickel/yttria-stabilised zirconia cermet anodes for solid oxide fuel cells”, Netherlands: University of Twente, The Netherlands; 1999.
[14] L. Bi, E. H. Da’as, S. P. Shafi, “Proton-conducting solid oxide fuel cell (SOFC) with Y-doped BaZrO3 electrolyte”, Electrochem. Commun., Vol. 80, pp. 20-23, 2017.
[15] L. Malavasi, C. J. Fisher, M. S. Islam, “Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features”, Chem. Soc. Rev., Vol. 39, pp. 4370-4387, 2010.
[16] E. Fabbri, D. Pergolesi, E. Traversa, “Materials challenges toward proton-conducting oxide fuel cells: a critical review”, Chem. Soc. Rev., Vol. 39, pp. 4355-4369, 2010.
[17] H. Iwahara, “Oxide-ionic and protonic conductors based on perovskite-type oxides and their possible applications”, Solid State Ionics, Vol. 52, pp. 99-104, 1992.
[18] H. Iwahara, Y. Asakura, K. Katahira, M. Tanaka, “Prospect of hydrogen technology using proton-conducting ceramics”, Solid State Ionics, Vol. 168, pp. 299-310, 2004.
[19] H. Iwahara, H. Uchida, K. Ono, K. Ogaki, “Proton conduction in sintered oxides based on BaCeO3”, J. Electrochem. Soc., Vol. 135, pp. 529-533, 1988.
[20] K. D. Kreuer, “Proton-conducting oxide”, Annu. Rev. Mater. Res., Vol. 33, pp. 333-359, 2003.
[21] Y. M. Guo, Y. Lin, H. A. Shi, R. Ran, Z. P. Shao, “A high electrochemical performance proton conductor electrolyte with CO2 tolerance”, Chinese J. Catal., Vol. 30, pp. 479-481, 2009.
[22] Y. Okuyama, N. Ebihara, K. Okuyama, Y. Mizutani, “Improvement of protonic ceramic fuel cells with thin film BCZY electrolyte”, ECS Trans., Vol. 68, pp. 2545-2553, 2015.
[23] G. S. Reddy, R. Bauri, “Y and In-doped BaCeO3-BaZrO3 solid solutions: chemically stable and easily sinterable proton conducting oxides”, J. Alloys Compd., Vol. 688, pp. 1039-1046, 2016.
[24] S. Gopalan, A. V. Virkar, “Thermodynamic stabilities of SrCeO3 and BaCeO3 using a molten salt method and galvanic cells”, J. Electrochem. Soc., Vol. 140, pp. 1060-1065, 1993.
[25] F. L. Chen, O. T. Sørensen, G. Y. Meng, D. K. Peng, “Chemical stability study of BaCe0.9Nd0.1O3-δ high-temperature proton-conducting ceramic”, J. Mater. Chem., Vol. 7, pp. 481-485, 1997.
[26] Y. M. Guo, Y. Lin, R. Ran, Z. P. Shao, “Zirconium doping effect on the performance of proton-conducting BaZryCe0.8−yY0.2O3−δ (0.0 ≤ y ≤ 0.8) for fuel cell applications”, J. Power Sources, Vol. 193, pp. 400-407, 2009.
[27] A. Afif, N. Radenahmad, C. M. Lim, M. I. Petra, M. Aminullslam, S. M. H. Rahman, S. Eriksson, A. K. Azad, “Structural study and proton conductivity in BaCe0.7Zr0.25−xYxZn0.05O3 (x=0.05, 0.1, 0.15, 0.2 & 0.25)”, Int. J. Hydrogen Energy, Vol. 41, pp. 11823-11831, 2015.
[28] H. S. Spacil. “Electrical device including nickel-containing stabilized zirconia electrode”, US patent 3, 503, 8091970.
[29] C. W. Tanner, K. Z. Fung, A. V. Virkar, “The effect of porous composite electrode structure on solid oxide fuel cell performance: I. theoretical analysis”, J. Electrochem. Soc., Vol. 144, pp. 21-30, 1997.
[30] R. J. Gorte, J. M. Vohs, “Nanostructured anodes for solid oxide fuel cells”, Curr. Opin. Colloid Interface Sci., Vol. 14, pp. 236-244, 2009.
[31] E. Fabbri, D. Pergolesi, E. Traversa, “Electrode materials: A challenge for the exploitation of protonic solid oxide fuel cells”, Sci. Technol. Adv. Mater., Vol. 11, pp. 044301, 2010.
[32] T. Matsui, R. Kishida, H. Muroyama, K. Eguchi, “Comparative study on performance stability of Ni-oxide cermet anodes under humidified atmospheres in solid oxide fuel cells”, J. Electrochem. Soc., Vol. 159, pp. F456-F460, 2012.
[33] S. M. Fang, K. Brinkman, F. L. Chen, “Unprecedented CO2 promoted hydrogen permeation in Ni-BaZr0.1Ce0.7Y0.1Yb0.1O3−δ membrane”, Appl. Mater. Interfaces, Vol. 6, pp. 725-730, 2014.
[34] G. C. Mather, F. M. Figueiredo, J. R. Jurado, J. R. Frade, “Synthesis and characterization of cermet anodes for SOFCs with a proton-conducting ceramic phase”, Solid State Ionics, Vol. 162, pp. 115-120, 2003.
[35] W. G. Coors, A. Manerbino, “Characterization of composite cermet with 68 wt% NiO and BaCe0.2Zr0.6Y0.2O3−δ”, J. Membr. Sci., Vol. 376, pp. 50-55, 2011.
[36] L. Bi, E. Fabbri, Z. Sun, E. Traversa, “BaZr0.8Y0.2O3−δ-NiO composite anodic powders for proton-conducting SOFCs prepared by a combustion method”, J Electrochem. Soc., Vol. 158, pp. B797-B803, 2011.
[37] N. Narendar, G. C. Mather, P. A. N. Dias, D. P. Fagg, “The importance of phase purity in Ni-BaZr0.85Y0.15O3−δ cermet anodes–novel nitrate-free combustion route and electrochemical study”, RSC Adv., Vol. 3, pp. 859-869, 2013.
[38] L. Chevallier, M. Zunic, V. Esposito, E. D. Bartolomeo, E Traversa, “A wet-chemical route for the preparation of Ni-BaCe0.9Y0.1O3−δ cermet anodes for IT-SOFCs”, Solid State Ionics, Vol. 180, pp. 715-720, 2009.
[39] B. H. Rainwater, M. Liu, “A more efficient anode microstructure for SOFCs based on proton conductors”, Int. J. Hydrogen Energy, Vol. 37, pp. 18342-18348, 2012.
[40] L. Yang, C. Zuo, S. Wang, Z. Cheng, M. Liu. “A novel composite cathode for low-temperature SOFCs based on oxide proton conductors”, Adv. Mater., Vol. 20, pp. 3280-3283, 2008.
[41] H. S. Song, S. Lee, S. H. Hyun, J. Kim, J. Moon, “Compositional influence of LSM-YSZ composite cathodes on improved performance and durability of solid oxide fuel cells”, J. Power Sources, Vol. 187, pp. 25-31, 2009.
[42] R. Peng, T. Wu, W. Liu, X. Liu, G. Meng, “Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes”, J. Mater. Chem, Vol. 20, pp. 6218-6225, 2010.
[43] J. Dailly, S. Fourcade, A. Largeteau, F. Mauvy, J. C. Grenier, M. Marrony, “Perovskite and A2MO4-type oxides as new cathode materials for protonic solid oxide fuel cells”, Electrochim. Acta, Vol. 55, pp. 5847-5853, 2010.
[44] E Antolini, “Carbon supports for low temperature fuel cell catalysts”, Appl. Cat. B: Environ., Vol. 88, pp. 1-24, 2009.
[45] J. S. Yu, S. Kang, S. B. Yoon, G. Chai, “Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter”, J. American Chem. Soc., Vol. 124, pp. 9382-9383, 2002.
[46] E. P. Ambrosio, C. Francia, M. Manzoli, N. Penazzi, P. Spinelli, “Platinum catalyst supported on mesoporous carbon for PEMFC”, Int. J. Hydrogen Energy, Vol. 33, pp. 3142-3145, 2008.
[47] S. Q. Song, Y. R. Liang, Z. H. Li, Y. Wang, R. W. Fu, D. C. Wu, P. Tsiakaras, “Effect of pore morphology of mesoporous carbons on the electrocatalytic activity of Pt nanoparticles for fuel cell reactions”, Appl. Catal. B, Vol. 98, pp. 132-137, 2010.
[48] L. Calvillo, M. Gangeri, S. Perathoner, G. Centi, R. Moliner, M. Lazaro, “Synthesis and performance of platinum supported on ordered mesoporous carbons as catalyst for PEM fuel cells: Effect of the surface chemistry of the support”, Int. J. Hydrogen Energy, Vol. 36, pp. 9805-9814, 2011.
[49] J. Tang, J. Liu, N. L. Torad, T. Kimura, Y. Yamauchi, “Tailored design of functional nanoporous carbon materials toward fuel cell applications”, Nano Today, Vol. 9, pp. 305-323, 2014.
[50] H. Liu , C. Song, L. Zhang, J. J. Zhang, H. J. Wang, D. P. Wilkinson, “A review of anode catalysis in the direct methanol fuel cell”, J. Power Source, Vol. 155, pp. 95-110, 2006.
[51] T. Matsui, T. Okanishi, K. Fujiwara, K. Tsutsui, R. Kikuchi, T. Takeguchi, K. Eguchi, “Effect of reduction oxidation treatment on the catalytic activity over tin oxide supported platinum catalysts”, Sci. Tech. Adv. Mat., Vol. 7, pp. 524-530, 2006.
[52] Y. Shao G. Yin, Y. Gao, “Understanding and approaches for the durability issues of Pt based catalysts for PEM fuel cell”, J. Power Source, Vol. 171, pp. 558-566, 2007.
[53] M. Nakada, A. Ishihara, S. Mitsushima, N. Kamiya, K. I. Ota, “Effect of tin oxides on oxide formation and reduction of platinum particles”, Electrochem. Solid State Letters, Vol. 10, pp. 1-4, 2007.
[54] S. Beyhan, N. E. Şahin, S. Pronier, J. M. Léger, F. Kadırgan, “Comparison of oxygen reduction reaction on Pt/C, Pt-Sn/C, Pt-Ni/C, and Pt-Sn-Ni/C catalysts prepared by Bönnemann method: A rotating ring disk electrode study”, Electrochim. Acta, Vol. 151, pp. 565-573, 2015.
[55] S. M. Haile, G. Staneff, K. H. Ryu, “Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites”, J. Mater. Sci., Vol. 36, pp. 1149-1160, 2001.
[56] D. Medvedev, J. Lyagaeva, S. Plaksin, A. Demin, P. Tsiakaras, “Sulfur and carbon tolerance of BaCeO3-BaZrO3 proton-conducting materials”, J. Power Sources, Vol. 273, pp. 716-723, 2015.
[57] G. Robert, A. Kaiser, E. Batawi, “In: Proceedings of the 6th European SOFC Forum”, Lucerne, Switzerland 2004, 193.
[58] T., C. Chung, P. H. Larsen, M. Mogensen, “The mechanism behind redox instability of anodes in high-temperature SOFCs”, J. Electrochem. Soc., Vol. 152, pp. A1286-A2192, 2005.
[59] Y. Guo, R. Ran, Z. Shao, A novel way to improve performance of proton-conducting solid-oxide fuel cells through enhanced chemical interaction of anode components, Int. J. Hydrogen Energy, Vol. 36, pp. 1683-1691, 2011.
[60] A. K. Baral, S. Choi, B. K. Kim, J. H. Lee, Processing and characterizations of a novel proton-conducting BaCe0.35Zr0.50Y0.15O3−δ eElectrolyte and its nickel-based anode composite for anode-supported IT-SOFC, Mater. Renew. Sustain. Energy, Vol. 3, pp. 1-9, 2014.
[61] D. Sarantaridis, R. A. Rudkin, A. Atkinson, “Oxidation failure modes of anode-supported solid oxide fuel cells”, J. Power Sources, Vol. 180, pp. 704-710, 2008.
[62] D. Waldbilli, A. Wood, D. G. Ivey, “Enhancing the redox tolerance of anode-supported SOFC by microstructural modification”, J. Electrochem. Soc., Vol. 154, pp. B133-B138, 2007.
[63] A. Faes, A. H. Wyser, A. Zryd, J. V. Herle, “A review of redox cycling of solid oxide fuel cells anode”, Membranes, Vol. 2, pp. 585-664, 2012.
[64] W. G. Coors, “Protonic ceramic steam-permeable membranes”, Solid State Ionics, Vol. 178, pp. 481-485, 2007.
[65] M. Kubota, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, “Microstructural evolution of Ni-YSZ cermet anode under thermal cycles with redox treatments”, J. Electrochem. Soc., Vol. 162, pp. F380-F386, 2015.
[66] N. Nasani, Z. J. Wang, M. G. Willinger, A. A. Yaremchenko, D. P. Fagg, In-situ redox cycling behavior of Ni-BaZr0.85Y0.15O3−δ cermet anodes for protonic ceramic fuel cells, Int. J. Hydrogen Energy, Vol. 39, pp. 19780-19788, 2014.
[67] L. Jia, Z. Lu, J. P. Miao, Z. G. Liu, G. Q. Li, W. H. Su “Effects of pre-calcined YSZ powders at different temperatures on Ni-YSZ anodes for SOFC”, J. Alloys Compd., Vol. 414, pp. 152-157, 2006.
[68] S. Z. Wang, Q. He, M. L. Liu, “Promising Ni-Fe-LSGMC anode compatible with lanthanum gallate electrolyte”, Electrochim. Acta, Vol. 54, pp. 3872-3876, 2009.
[69] M. Chen, B. H. Kim, Q. Xu, B. G. Ahn, “Preparation and electrochemical properties of Ni-SDC thin films for IT-SOFC anode”, J. Mem. Sci., Vol. 334, pp. 138-147, 2009.
[70] L. O. O. D. Costa, A. M. D. Silva, F. B. Noronha, L. V. Mattos, “The study of the performance of Ni supported on gadolinium doped Ceria SOFC anode on the steam reforming of ethanol”, Int. J. Hydrogen Energy, Vol. 37, pp. 5930-5939, 2012.
[71] N. K. Hoa, H. A. Rahman, M. R. Somalu, “Effects of NiO loading and pre-calcination temperature on NiO-SDCC composite anode power for low-temperature solid oxide fuel cells, Ceram. Silikaty, Vol. 62, pp. 50-58, 2018.
[72] A. K. Chatterjee, R. Banerjee, M. Sharon, “Enhancement of hydrogen oxidation activity at a nickel coated carbon beads electrode by cobalt and iron”, J. Power Sources, Vol. 137, pp. 216-221, 2004.
[73] C. K. Cho, B. H. Choi, K. T. Lee, “Effect of Co alloying on the electrochemical performance of Ni-Ce0.8Gd0.2O1.9 anodes for hydrocarbon-fueled solid oxide fuel cells”, J. Alloys Compd., Vol. 541, pp. 433-439, 2012.
[74] J. Ayawanna, D. Wattanasiriwech, Suthee Wattanasiriwech, Kazunori Sato, “Electrochemical performance of Ni1-xCox-GDC cermet anodes for SOFCs”, Energy Procedia, Vol. 34, pp. 439-448, 2013.
[75] R. Nishida, P. Puengjinda, H. Nishino, K. Kakinuma, M. E. Brito, M. Watanabe, H. Uchida, “High-performance electrodes for reversible solid oxide fuel cell/solid oxide electrolysis cell: Ni–Co dispersed ceria hydrogen electrodes”, RSC Adv., Vol. 4, pp. 16260-16266, 2014.
[76] T. Guo, X. L. Dong, M. M. Shirolkar, X. Song, M. Wang, L. Zhang, M. Li, H. Q. Wang, “Effects of cobalt addition on the catalytic activity of the Ni-YSZ anode functional layer and the electrochemical performance of solid oxide fuel cells”, ACS Appl. Mater. Interfaces, Vol. 6, pp. 16131-16139, 2014.
[77] J. C. W. Mah, A. Muchtar, M. R. Somalu, M. J. Ghazali, “Metallic interconnects for solid oxide fuel cell: A review on protective coating and deposition techniques”, Int. J. Hydrogen Energy, Vol. 42, pp. 9219-9229, 2017.
[78] W. Nicharee, S. Chaianansutcharit, K. Sato, “Electrochemical performance and stability of Ni1-xCox-based cermet anode for direct methane-fuelled solid oxide fuel cells”, MATEC Web of Conferences, Vol. 130, pp. 3005-3009, 2017.
[79] G. C. Ding, T. Gan, J. Yu, P. Li, X. L. Yao, N. J. Hou, L. J. Fan, Y. C. Zhao, Y. D. Li, “Carbon-resistant Ni1-xCox-Ce0.8Sm0.2O1.9 anode for solid oxide fuel cells fed with methanol”, Catal. Today, Vol. 298, pp. 250-257, 2017.
[80] Z. Xie, C. R. Xia, M. Y. Zhang, W. Zhu, H. T. Wang, “Ni1−xCux alloy-based anodes for low-temperature solid oxide fuel cells with biomass-produced gas as fuel”, J. Power Source, Vol. 161, pp. 1056-1061, 2006.
[81] M. Miyake, S. Matsumoto, M. Iwami, S. Nishimoto, Y. Kameshima, “Electrochemical performances of Ni1-xCux/SDC cermet anodes for intermediate-temperature SOFCs using syngas fuel”, Int. J. Hydrogen Energy, Vol. 41, pp. 13625-13631, 2016.
[82] Z. C. Wang, S. Q. Wang, S. Y. Jiao, W. J. Weng, K. Cheng, B. Qian, H. L. Yu, Y.M. Chao, A hierarchical porous microstructure for improving long-term stability of Ni1-xCux/SDC anode-supported IT-SOFCs fueled with dry methane, J. Alloys Compd., Vol. 702, pp. 186-192, 2017.
[83] H. Kim, C. Lu, W. L. Worrell, J. M. Vohs, R. J. Gorte, “Cu-Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells”, J. Electrochem. Soc., Vol. 149, pp. A247-A250, 2002.
[84] M. L. Toebes, J. H. Bitter, A. J. V. Dillen, K. P. D. Jong, “Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers”, Cat. Today, Vol. 76, pp. 33-42, 2002.
[85] K. Wei, X. X. Wang, R. A. Budiman, J. H. Kang, B. Lin, F. B. Zhou, Y. H. Ling, “Progress in Ni-based anode materials for direct hydrocarbon solid oxide fuel cells”, J. Mater. Sci., Vol. 53, pp. 8747-8765, 2018.
[86] M. S. Fan, A. Z. Abdullah, S. Bhatia, “Utilization of greenhouse gases through carbon dioxide reforming of methane over Ni-Co/MgO-ZrO2: preparation, characterization and activity studies”, Appl. Catl. B-Environ., Vol. 100, pp. 365-377, 2010.
[87] J. G. Zhang, H. Wang, A. K. Dalai, “Development of stable bimetallic catalysts for carbon dioxide reforming of methane”, J. Catal., Vol. 249, pp. 300-310, 2007.
[88] W. Tu, M. Ghoussoub, C. V. Singh, Y. H. C. Chin, “Consequences of surface oxophilicity of Ni, Ni-Co, and Co clusters on methane activation”, J. Am. Chem. Soc., Vol. 139, pp. 6928-6945, 2017.
[89] 凌永健,王治平,汪建民主編,材料分析,初版,中國材料科學會,新竹市,民國七十七年。
[90] https://www.rigaku.com/en/products/xrf/primus2.
[91] https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/x-ray-fluorescence/what-is-xrf.html
[92] J. Asgardi, J. C. Calderón, F. Alcaide, A. Querejeta, L. Calvillo, M. J. Lázaro, G. García, E. Pastor, “Carbon monoxide and ethanol oxidation on PtSn supported catalysts: Effect of the nature of the carbon support and Pt:Sn composition”, Appl. Catal. B, Vol. 33, pp. 168-169, 2015.
[93] D. H. Kwak, Y. W. Lee, S. B. Han, E. T. Hwang, H. C. Park, M. C. Kim, K. W. Park. “Ultrasmall PtSn alloy catalyst for ethanol electro-oxidation reaction”, J. Power Sources, Vol. 275, pp. 557-562, 2015.
[94] Y. T. Liang, S. P. Lin, C. W. Liu, S. R. Chung, T. Y. Chen, J. H. Wang, K. W. Wang, “The performance and stability of the oxygen reduction reaction on Pt-M (M = Pd, Ag and Au) nanorods: An experimental and computational study”, Chem. Commun., Vol. 51, pp. 6605-6608, 2015.
[95] F. E. Lopez-Suarez, A. Bueno-Lopez, K. I. B. Eguiluz, G. R. Salazar-Banda, “Pt-Sn/C catalysts prepared by sodium borohydride reduction for alcohol oxidation in fuel cells: effect of the precursor addition order”, J. Power Sources, Vol. 268, pp. 225-232, 2014.
[96] T. H. Yeh, C. W. Liu, H. S. Chen, K. W. Wang, “Preparation of carbon-supported PtM (M = Au, Pd, or Cu) nanorods and their application in oxygen reduction reaction”, Electrochem. Commun., Vol. 31, pp. 125-128, 2013.
[97] Y. Z. Guo, S. Y. Yan, C. W. Liu, T. F. Chou, J. H. Wang, K. W. Wang, “The enhanced oxygen reduction reaction performance on PtSn nanowires: the importance of segregation energy and morphological effects”, J. Mater. Chem. A, Vol. 5, pp. 14355-14364, 2017.
[98] M. Bron, S. Fiechte, M. Hilgendorff, P. Bogdanoff, “Catalysts for oxygen reduction from heat-treated carbon-supported iron phenantroline complexes”, J. Appl. Electrochem., Vol. 32, pp. 211-216, 2002.
[99] K. I. Hirano, R. P. Agarwala, B. L. Averbach, M. Cohen, “Diffusion in Cobalt-Nickel Alloys”, J. Appl. Phys., Vol. 33, pp. 3049-3054, 1962.
[100] J. M. Zhang, S. N. Sun, Y. Li, X. J. Zhang, P. Y. Zhang, Y. J. Fan, “A strategy in deep eutectic solvents for carbon nanotube-supported PtCo nanocatalysts with enhanced performance toward methanol electrooxidation”, Int. J. Hydrogen Energy, Vol. 42, pp. 26744-26751, 2017.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2020-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明