博碩士論文 102323091 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:54.80.249.22
姓名 顧乃華(Nai-Hua Gu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以微陽極導引電鍍法製備銅螺旋微米結構與其機械性質分析
(On the Microhelix Structures of Copper Prepared by Microanode Guided Electroplating and their Mechanical properties)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究使用微陽極導引電鍍法在銅片基材上電鍍微米尺度之銅螺旋結構物。採用直徑為 75 μm 之白金絲,經樹脂鑲埋後露出 角 錐狀、圓盤狀兩種不同形狀微陽極,在含硫酸銅溶液之鍍浴中,控制微陽極與銅片間偏壓在3.4 V,並維持微陽極與銅基材( 或螺旋結構物) 頂端之間距在 30 μm,進行微陽極導引電鍍。結果顯示:在圓盤狀微陽極電鍍所得之微螺旋的線徑均勻度較佳,隨電鍍時間增長下,粗細不均的現象較不明顯。 藉由商用 COMSOL軟體來模擬兩種不同形狀微陽極導引電鍍過程之電場分布,得知在使用圓盤形微陽極微電鍍過程,其電場分佈較適合生長線徑均勻之微螺旋。 以圓盤形微陽極導引電鍍法在製作銅螺旋之微結構時,依據 COMSOL 軟體之電場強度模擬結果與實際實驗交互比對,可以推測可行的析鍍電場強度範圍需要高於 10 kV/m 以上,此工作範圍將決定銅微螺旋之直徑與螺距之大小。當螺旋直徑由 230 μm 增加到 470 μm,微螺旋線徑會逐漸下降,且螺旋線徑均勻 度上升;螺距由 145 μm 增加到 250 μm 時,微螺旋線徑也會逐漸下降,螺旋線徑均勻度上升。本研究製程在螺旋之直徑為 390、 470 μm,螺距於215、 250 μm,可以得到均勻的銅微螺旋結構,其螺旋線徑變化量小於 10%。
若改變鍍浴中銅離子濃度使其電導率介於 5、 10、 15 及 20 S/m 之間,以圓盤形微陽極導引電鍍銅螺旋結構,結果發現鍍液之電導率 5 S/m 時,獲得之銅螺旋結構最均勻 ,其螺旋線徑增加量可低於 15%,隨著鍍液之電導率上升至 20 S/m,其螺旋線徑增加量將高達 76.3%。經微力壓縮實驗與奈米壓痕試驗來研究微螺旋之機械性質,所得銅微螺旋之硬度、楊氏模數與彈性常數接隨電鍍浴電導率上升而提高,電導率 20 S/m 之鍍液析鍍出之銅微米螺旋結構的硬度為 0.355 GPa,楊氏模數為 5.445 GPa,彈簧之彈性常數為0.775 mN/μm。
摘要(英) The copper microhelix was prepared by microanode guiding electroplating (MAGE) technique. A microanode was made of platinum (75 μm in diameter). The copper microhelix structure was deposited at a potential of 3.4 V. The initial gap between microanode and the top of the coils was set at a distance of 30 μm. We used two different shape of microanode (cone-liked and disk-liked) to do the electroplating. We observed that the line diameter of helix structure made with disk like microanode didn’t increase with time, and then used commercial software (COMSOL Multiphylics) to simulate the electric field of two type of microanode and verified the result of experiment. The result was that the disk like microanode had better electric filed distribution. We found that the electric field should higher than 10 kV/m when deposited the copper microhelix. This working range could decide the wire diameter of the copper microhelix. The larger helix diameter (390, 470 μm) and higher pitch (215, 250 μm) could have better wire diameter (the amount of change is less than 10%).
Then we used the disk like microanode to do the copper helix structure deposition in the bath with conductivity of 5, 10, 15, and 20 S/m, than analysed the mechanical properties with microforce compression test and nanoindentation test. In the result, copper helix structure had the best hardness (0.355 mN/μm2), Young’s modulus (5.445 GPa), and spring constant (0.775 mN/μm) at
conductivity of 20 S/m.
關鍵字(中) ★ 微陽極導引電鍍
★ 銅微米螺旋結構
★ 奈米壓痕
關鍵字(英) ★ Microanode guided electroplating
★ Copper microhelix structure
★ Nanoindentation
論文目次 摘要 I
ABSTRACT III
表目錄 VIII
圖目錄 X
符號與字母縮寫說明 XIII
第一章、 前言 1
1-1 研究背景 1
1-2 研究動機 3
1-3 研究目的 4
第二章、 基礎理論與文獻回顧 5
2-1 電鍍原理 5
2-2 局部微電鍍之發展 6
2-3 奈米壓痕測試估計材料之硬度與楊氏模數 9
2-4 動態微力拉伸與壓縮試驗估計彈簧常數 11
2-5 電場模擬軟體之有限元素分析理論基礎 12
第三章、 研究方法 15
3-1 研究方法流程 15
3-2 微陽極導引電鍍設備與三維控制平台之架設 15
3-2-1 微陽極與陰極試片製作 16
3-2-2 鍍液調配 17
3-3 即時影像微陽極導引電鍍系統之調校與操作 17
3-4 實驗步驟 19
3-4-1 微陽極之形狀對銅微螺旋析鍍物之影響 19
3-4-2 微螺旋析鍍物之螺距與直徑參數研究 20
3-4-3 鍍浴電導率對微螺旋形貌與機械性質影響研究 21
3-4-4 析鍍物之形貌觀察 21
3-4-5 微螺旋析鍍物之硬度與楊氏模數測定 22
3-4-6 微螺旋析鍍物之彈簧係數測定 22
3-5 電場模擬方式與設定 23
第四章、 結果 25
4-1 微陽極形狀之影響 25
4-1-1 角錐式微陽極與圓盤式微陽極電鍍結果 25
4-1-2 角錐式微陽極與圓盤式微陽極模擬結果 26
4-2 螺旋間距與直徑參數對析鍍物形貌之影響 26
4-3 鍍浴之電導率對微螺旋形貌影響 28
4-4 微螺旋析鍍物之奈米壓痕試驗 28
4-5 微螺旋析鍍物之動態微力壓縮試驗 29
第五章、 討論 31
5-1 微陽極形狀之選擇與電場模擬分析 31
5-2 微電鍍之電場強度與析鍍物螺距、直徑之關聯性 32
5-3 微電鍍之電場強度受鍍浴電導率之影響 34
5-4 微陽極導引電鍍析鍍銅螺旋的工作範圍探討 35
第六章、 結論與前瞻 36
參考文獻 37
參考文獻 1. R. Bruck, K. Hahn, J. Steinecker, “Technology Description Methods for LIGA processes”, J. Micromech. Microeng, Vol. 5, pp.196-198, Jan. 1995.
2. L. Physik, “Laser LIGA-Excimer Laser Microstructuring and Replication”, Lambda Highlights, No. 45, pp. 1 -4, Aug. 1994.
3. M. Abraham, J. Arnold, W. Ehrfeld, K. Hesch, H. Mobius, T. Paatzsch, C. Schulz, “Laser-LIGA: A Cost Saving Process for Flexible Production of Micro-structures”, SPIE, Vol. 2639, pp.164-173, 1995.
4. T. Wallenberger and M. Boman, “Inorganic fibers and microstructures directly from the vapour phase”, Composites Science and Technology, Vol. 51, pp. 193-212, 1994.
5. K. Ikuta, K. Hirowatari and T. Ogata, “Three dimensional micro integrated fluid system (MIFS) fabricated by stereo lithography”, Journal of Micro Electro Mechanical System, pp.1 -6, 1994.
6. R. D. Farahani, K. Chizari and D. Therriault, “Three-dimensional printing of freeform helical microstructures: a review”, Nanoscale, Vol. 6, pp. 10470–10485, 2014.
7. X. Li, C. Wang, W. Zhang, Y. Li, “Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process”, Materials Letters, Vol. 63,pp. 403–405, 2009.
8. L. S. Bertol, W. K. Junior, F. P. Silva, C. Aumund-Kopp, “Medical design:Direct metal laser sintering of Ti–6Al–4V”, Materials and Design, Vol. 31, pp. 3982–3988, 2010.
9. K. McKelvey, M. A. O’Connell and P. R. Unwin, “Meniscus confined fabrication of multidimensional conducting polymer nanostructures with scanning electrochemical cell microscopy (SECCM)”, Chem. Commun., Vol. 49, pp. 2986-2988, Feb. 2013.
10. J. D. Madden and I. W. Hunter, “Three-Dimensional Microfabrication by localized Electrochemical Deposition”, Journal of Microelectromechanical Systems, Vol. 5, No. 1, Mar. 1996.
11. E. M. El-Giar, U Cairo, and D. J. Thomson, “Localized Electrochemical Plating of Interconnectors for Microelectronics,” 1997 Conference on Communications, Power and Computing, Winnipeg, MB, pp. 327-332, May 22-23, 1997.
12. S. H. Yeo, J. H. Choo and K. H. A.Sim, “On the effects of ultrasonic vibrations on localized eletrochemical deposition”, J. Micromech. Microeng., vol. 12, pp. 271 –279, Apr. 2002.
13. R. A. Said, “Microfabrication by localized electrochemical deposition:experimental investigation and theoretical modeling”, Nanotechnology, vol. 14, pp. 523-531, Mar. 2003.
14. S. K. Seol, J. M. Yi, X. Jin, C. C. Kim, J. H. Je, W. L. Tsai, P. C. Hsu, Y. Hwu, C. H. Chen, L. W. Chang, and G. Margaritondo, “Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition”, Electrochemical and Solid-State Letters, vol. 7, No. 9, pp. C95-C97, Jul. 2004.
15. S. K. Seol, A. R. Pyun, Y. Hwu, G. Margaritondo and J. H. Je, “ Localized electrochemical deposition of copper monitored using real-time x-ray microradiography”, Adv. Funct. Mater., vol. 15, pp. 934-937, 2005.
16. S. K. Seol, J. T. Kim, J. H Je, Y. Hwu and G. Margaritondo, “Fabrication of freestanding metallic micro hollow tubes by template-free localized electrochemical deposition”, Electrochem. Solid-State Lett., vol. 10, pp. C44-C46, Mar. 2007.
17. J. H. Choo and S. H. Yeo, “Enhancement of spatial resolution of microfabricated columns using localized electrochemical deposition”, Proc. SPIE, vol. 4236, pp. 260-271, 2001.
18. J. H. Choo, S. H. Yeo and F. F. Tan, “Flexible tooling for localized electrochemical deposition with wireelectrodischarge grinding”, Micosyst. Technol., vol. 10, pp. 127-136, 2004.
19. C. S. Lin, C. Y. Lee, J. H. Yang, Y. S. Huang, “Improved Copper Microcolumn Fabricated by Localized Electrochemical Deposition,” Electrochemical and Solid-State Letters, vol. 8, pp. C125-C129, Jul. 2005.
20. C. Y. Lee, C. S. Lin and B. R. Lin, “Localized electrochemical deposition process improvement by using different anodes and deposition directions”, J. Micromech. Microeng., vol. 18, pp. 105008, Sep. 2008.
21. J. C. Lin, S. B. Jang, D. L. Lee, C. C. Chen, P. C. Yeh, T. K. Chang and J. H. Yang, “Fabrication of micrometer Ni columns by continuous and intermittent micro anode guided electroplating”, J. Micromech. Microeng., vol. 15, pp. 2405-2413, Nov. 2005.
22. J. C. Lin, T. K. Chang, J. H. Yang, J. H. Jeng, D. L. Lee and S. B. Jiang, “Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu microcolumn for thermal measurement”, J. Micromech. Microeng., vol. 19, pp. 015030, Dec. 2008.
23. T. K. Chang, J. C. Lin, J. H. Yang, P. C. Yeh, D. L. Lee and S. B. Jiang, “Surface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition”, J. Micromech. Microeng., vol. 17, pp. 2336-2343, Oct. 2007.
24. J. H. Yang, J. C. Lin, T. K. Chang, G. Y. Lai and S. B. Jiang, “Assessing the degree of localization in localized electrochemical deposition of copper”, J. Micromech. Microeng., vol. 18, pp. 055023, Apr. 2008.
25. 張庭綱,“微陽極導引電鍍法製作銅微柱及銅柵欄之研究”,國立中央大學機械工程研究所碩士論文, 2004。
26. 陳譽升,“鎳微柱電鍍受鍍浴黏度與電阻率之影響”,國立中央大學機械工程研究所碩士論文, 2011。
27. 游睿為,“單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測
與解析”,國立中央大學機械工程研究所碩士論文, 2001。
28. 葉柏青,“微陽極導引電鍍與監測”,國立中央大學機械工程研究所碩士論文, 2003。
29. 賴格源,“微陽極導引電鍍銅其組織及覆蓋範圍之探討”,國立中央大學機械工程研究所碩士論文, 2006。
30. 楊仁泓,“微陽極導引電鍍法製備微析物之局部電場強度分析”,國立中央大學機械工程研究所博士論文, 2009。
31. 鄭家宏,“以微陽極導引電鍍法製作鎳銅合金銅微柱”,國立中央大學機械工程研究所碩士論文, 2005。
32. 游絢博,“陽極單軸間歇運動下之直流、脈衝微電析鎳”,國立中央大學機械工程研究所碩士論文, 2000。
33. J. H. Yang, J. C. Lin, T. K. Chang, X. B. You and S. B. Jiang, “Localized Ni deposition improved by saccharin sodium in the intermittent MAGE process”, J. Micromech. Microeng., vol. 19, pp. 025015, Jan. 2009.
34. J. C. Lin, J. H. Yang, T. K. Chang, and S. B. Jiang, “On the Structure of Micrometer Copper Features Fabricated by Intermittent Micro-Anode Guided Electroplating”, Electrochimica Acta, vol. 54, pp. 5703-5708, Oct. 2009.
35. T. C. Chen, Y. R. Hwang, J. C. Lin, Y. J. Ciou, “The Development of a RealTime Image Guided Micro Electroplating System”, Int. J. Electrochem. Sci., vol. 5, pp. 1810-1820, Dec. 2010.
36. Y. R. Hwang, J. C. Lin, T. C. Chen, “The Analysis of the Deposition Rate for Continuous Micro-Anode Guided Electroplating Process”, Int. J. Electrochem. Sci., vol. 7, pp. 1359-1370, Feb. 2012.
37. 邱永傑,“即時影像引導連續式微電鍍之立體微結構製作研究”,國立中央大學光機電工程研究所碩士論文, 2011。
38. Y. J. Ciou, Y. R. Hwang, and J. C. Lin, “Fabrication of Two-Dimensional Microstructures by Using Micro-Anode-Guided Electroplating with RealTime Image Processing”, ECS Journal of Solid State Science and Technology, vol. 3, No. 7, pp. P268-P271, June 2014.
39. 丁志華、管正平、黃新言、戴寶通,奈米壓痕量測系統簡介,奈米通訊期刊,第九卷,第三期,第 1 ~ 10 頁。
40. 張瑞慶,奈米壓痕技術與應用,中華民國力學學會會訊,第 114 期, 2006。
41. 黎文龍、邱奎鈞,螺旋彈簧截面形狀對勁度與應力影響之研究,第二十一屆中華民國振動與噪音工程學術研討會,第 342-346 頁,中華民國 102年 6 月 29 日 。
42. 皮托科技股份有限公司, COMSOL MULTIPHYSICS 有限元素分析快易通,皮托科技,彰化市,民國 103.02。
43. 皮托科技股份有限公司, COMSOL MULTIPHYSICS 有限元素分析之化工大法,皮托科技,彰化市,民國 103.02。
44. L. T. Chen, J. W. Lee, Y. C. Yang, B. S. Lou, C. L. Li, J. P. Chu, “Microstructure, mechanical and anti-corrosion property evaluation of ironbased thin film metallic glasses”, Surface & Coatings Technology, Vol. 260, pp. 46–55, 2014.
45. K. Q. Qiu, Y. L. Ren, “Fabrication and mechanical properties of glassy coil springs”, Materials Letters, Vol. 60, pp. 1851–1853, 2006.
46. S. Nohut, G. A. Schneider, “Failure probability of ceramic coil springs”, J. Eur. Ceram. Soc., Vol. 29, pp. 1013-1019, 2008.
47. S. K. Seol, D. Kim, S. Lee , J. H. Kim, W. S. Chang, and J. T. Kim, “Electrodeposition-based 3D Printing of Metallic Microarchitectures with Controlled Internal Structures”, Small 2015, poblished online, pp. 1-7, 2015.
48. X. Li, C. T. Wang, W. G. Zhang, Y. C. Li, “Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process”, Materials Letters, Vol. 63, pp. 403–405, 2009.
指導教授 林景崎(Jing-chie Lin) 審核日期 2015-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明