博碩士論文 102323093 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.145.58.169
姓名 陳嘉軒(Chia-Hsuan Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 結合分子臨場吸附與電化學剝離法製備高品質石墨烯
(Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in-situ encapsulation)
相關論文
★ 利用化學氣相沉積法於規模化合成大面積石墨烯之研究★ 電化學輔助剝離於乾轉印大面積與超潔凈石墨烯之研究
★ 利用網印方法製備全固態石墨烯複合電極於高能量密度之微型電容的研究★ 有效披覆黑磷烯的穩定性之研究
★ Phosphorus and Nitrogen Dual-doped Graphene Oxide as Metal-free Catalyst for Hydrogen Evolution Reaction★ 利用氟化自組裝膜增強石墨烯與二硫化鉬的電傳輸特性之研究
★ 批量繞捲方法於化學氣相沉積法合成大面積單層與多層石墨烯之研究★ 石墨烯之複合電極於全固態纖維式微型超電容的研究
★ 利用改良液相剝離法提高銻烯合成產率與均質性之研究★ 石墨烯的霍爾效應感測器應用於快速且無標記DNA之研究
★ 利用低損傷電漿改質於提升二硫化鉬電晶體之電傳輸特性★ 石墨烯場效應電晶體應用於鼻咽癌循環腫瘤細胞生醫感測晶片之研究
★ 化學氣相沉積法合成二硫化鉬於矽基材料之可控性及變異性研究★ 使用低損傷電漿改質於提升二維通道電晶體電傳輸特性
★ 利用電化學剝離石墨烯之三維多孔隙電極於製作可撓式超級電容★ 懸空石墨烯之特性研究與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大量生產高品質石墨烯對於現今石墨烯的應用是相當重要的,雖然使用電化學剝離法可以達到量產高品質石墨烯,然而由於過去的電化學法生產的石墨烯產率相當低,尤其長時間電解下,反應發生飽和,產率無法持續。在本研究論文中,我們使用三聚氰胺分子為添加物來改善電剝離石墨烯的產率和品質,研究發現添加定量三聚氰胺時,所剝離出來的石墨烯比沒有添加多出了20.3wt%。這是由於三聚氰胺上的苯環結構和石墨烯上的苯環結構產生了強的π-π鍵作用力,同時三聚氰胺具有親水性,在水相電解液中,克服層間凡德瓦力,因此當電化學剝離時,可促進石墨烯的剝離。此外,研究也發現,石墨烯一旦被脫層後,表面分子吸附,提供了一種臨場包覆的保護作用,避免酸根進一步的氧化石墨烯表面,經由XPS來測出得到的C/O比為~26.17,且由拉曼光譜所量測到的特徵峰D/G比為~0.45,而片層厚度80%的在3層以下,顯示利用此機制可獲得低氧化程度與高結晶性的少層石墨烯片層。本研究也做了應用端的驗證,利用此石墨烯墨水所合成之透明導電薄膜,其片電阻值為13.5KΩ/sq,與傳統製程相較片電阻降低約85%。而將其與聚乙烯醇縮丁醛(Poly(vinyl butyral); 簡稱PVB)高分子做複合材料,所得到的導電率為3.3*10-3S/m。最後,我們利用一連續性的電解設備使用電化學做連續製程可以得到產率高達1.5g/hr,驗證了利用此概念達到連續合成高結晶性石墨烯的效果,對於未來的石墨烯應用將有很大助益。
摘要(英) Large-scale production of uniform and high-quality graphene is required for practical applications of graphene. The electrochemical exfoliation method is considered as a promising approach for the practical production of graphene. However, the relatively low production rate of graphene currently hinders its usage. Here, we demonstrate, for the first time, a rapid and high-yield approach to exfoliate graphite into graphene sheets via an electrochemical method with small molecular additives; where in this approach, the use of melamine additives is able to efficiently exfoliate graphite into high-quality graphene sheets. The exfoliation yield can increased up to 25 wt% with melamine additives compared to electrochemical exfoliation without such additives in the electrolyte. The proposed mechanism for this improvement in the yield is the melamine induced hydrophilic force from the basal plane; this force facilitates exfoliation and provides in-situ protection of the graphene flake surface against further oxidation, leading to high-yield production ofgraphene of larger crystallite size. The residual melamine can be easily washed away by water after collection of the graphene. The exfoliation with molecular additives exhibits higher uniformity(over 80% is graphene of less than 3 layers), lower oxidation density(C/O ratio of 26.17), and low defect level (D/G< 0.45), which are characteristics superior to those of reduced graphene oxide(rGO) or of a previously reported approach of electrochemical exfoliated graphene(EC-graphene). The continuous films obtained by the purified graphene suspension exhibit a sheet resistance of 13.5 kOhm/sq at ~95% transmittance. A graphene-based nanocomposite with PVB exhibits an electrical conductivity of 3.3×10-3 S/m for the graphene loading fraction of 0.46 vol %. Moreover, the melamine functionalized graphene sheets are readily dispersed in the aqueous solution during the exfoliation process, allowing for production of graphene in a continuous process. The continuous process for producing graphene was demonstrated, with a yield rate of 1.5 g/hr. The proposed method can produce high-crystallinity graphene in a fast and high-yield manner, which paves the path towards mass production of high-quality graphene for a variety of applications
關鍵字(中) ★ 電化學剝離
★ 石墨烯
★ 拉曼光譜
★ 透明導電薄膜
關鍵字(英) ★ :Electrochemical exfoliation
★ Graphene
★ Raman spectroscopy
★ Transparent conductive film
論文目次 總目錄
摘 要 i
Abstract ii
誌謝 iv
總目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1 前言 1
1-2研究動機 4
1-3實驗架構 6
第二章 文獻回顧 7
2-1 非液相剝離法製程的石墨烯 7
2-1-1微機械剝離法 7
2-1-2化學氣相沉積法 8
2-2氧化還原法 9
2-3液向剝離法製程的石墨烯 10
2-3-1剪力流剝離法 10
2-3-2超音波震盪法 11
2-3-3球磨法 11
2-3 電化學剝離法製程的石墨烯 13
2-3-1以酸性液體為電解液 13
2-3-2以離子溶液為電解液 14
2-3-3以中性鹽類溶液為電解液 15
2-4 石墨烯/高分子複合材料 17
第三章 實驗內容 18
3-1實驗流程 18
3-2實驗材料 19
3-2-1石墨塊與石墨粉(Graphite) 19
3-2-2三聚氰胺(Melamine) 19
3-2-3聚乙烯醇縮丁醛(Poly(vinyl butyral)) 19
3-2-4 十二甲基硫酸鈉(Sodium dodecyl sulfate) 19
3-3實驗設備 20
3-3-1光學顯微鏡 20
3-3-2穿透式電子顯微鏡 20
3-3-3掃描式電子顯微鏡 20
3-3-4拉曼光譜儀 20
3-3-5原子力顯微鏡 21
3-3-6光電子能譜儀 21
3-3-7 UV光穿透量測儀 21
3-3-8四點探針量測儀 21
3-3-9 X光繞射儀 22
3-4實驗方法 23
3-4-1 電化學石墨烯製作 23
3-4-2 連續製程石墨烯製作 23
3-4-3 石墨烯薄膜製作 25
3-4-4 石墨烯/高分子複合材料製作 26
第四章 結果與討論 28
4-1 電解石墨烯剝落量比較 28
4-2 SEM分析結果與討論 32
4-3 TEM分析結果與討論 33
4-4 OM分析結果與討論 34
4-5 AFM分析結果與討論 35
4-6 XPS分析結果與討論 36
4-7 XRD分析結果與討論 38
4-8 RAMAN分析結果與討論 39
4-9片電阻分析結果與討論 41
4-10石墨烯/高分子複合材料應用 43
4-11電化學石墨烯連續製程應用 47
第五章 結論 51
參考文獻 52


圖目錄
圖1-1碳家族結構圖 2
圖1-2目前各種石墨烯製程 3
圖1-3各製程的石墨烯品質與成本比較 5
圖2-1微機械剝離法流程圖 7
圖2-2化學氣相沉積法流程圖 8
圖2-3氧化還原法流程圖 9
圖2-4氧化還元後的石墨烯結構圖 10
圖2-5剪力流法裝置圖 10
圖2-6剪力流法流程圖 11
圖2-7超音波震盪法流程圖 11
圖2-8球磨法機制圖 12
圖2-9乾冰球磨法流程圖 12
圖2-10電化學裝置圖 13
圖2-11電解前後石墨烯變化圖 14
圖2-12離子液體剝落石墨烯機制圖 15
圖2-13離子液體電解石墨烯過程圖 15
圖2-14中性鹽類電解石墨烯機制圖 16
圖2-15石墨烯/高分子複合材料流程圖 17
圖3-1實驗架構圖 18
圖3-2電化學裝置圖 23
圖3-3連續製程石墨烯裝置圖 24
圖3-4石墨烯純化過濾流程圖 25
圖3-5石墨烯透明導電薄膜製作流程圖 26
圖3-6石墨烯/高分子複合材料製作流程圖 27
圖4-1石墨烯未添加三聚氰胺的電解情形 29
圖4-2石墨烯未添加三聚氰胺的粉末和溶液 30
圖4-3石墨烯添加三聚氰胺的電解情形 30
圖4-4石墨烯添加三聚氰胺的粉末和溶液 30
圖4-5電解過程機制示意圖 31
圖4-6 SEM所拍攝的石墨烯表面結構圖 32
圖4-7 SEM所拍攝的石墨烯表面結構放大圖 33
圖4-8銅網下的石墨烯片層結構 34
圖4-9 TEM選區繞射圖 34
圖4-10 OM下的石墨烯片層結構 35
圖4-11 AFM下的石墨烯片層結構 35
圖4-12 AFM下測量的石墨烯片層厚度 36
圖4-13石墨烯片層厚度統計圖 36
圖4-14不同水洗次數下的氮濃度 37
圖4-15沒有添加三聚氰胺時的XPS分析 38
圖4-16有添加三聚氰胺時的XPS分析 38
圖4-17石墨和石墨烯的XRD分析 39
圖4-18石墨和有無添加三聚氰胺的石墨烯拉曼分析圖 40
圖4-19有無添加三聚氰胺的石墨烯D/G比和2D/G比分析 40
圖4-20有無添加三聚氰胺的石墨烯La和Ld分析 41
圖4-21石墨烯的透明導電薄膜結構圖 42
圖4-22石墨烯透明導電薄膜的片電阻統計圖 43
圖4-23石墨烯/PS複合材料 45
圖4-24(1%wt)低濃度石墨稀/PVB複合材料 45
圖4-25(10%wt)高濃度石墨稀/PVB複合材料 45
圖4-26複合材料溶液 46
圖4-27複合材料導電測試 46
圖4-28石墨烯/高分子複合材料的SEM圖 47
圖4-29石墨烯/高分子複合材料的SEM放大圖 47
圖4-30連續製程裝置圖 49
圖4-31連續過程電解過程分析 49
圖4-32石墨烯電解後的情形 49


表目錄
表1-1石墨烯在原子尺度下的物理性質 3
表4-1不同濃度的三聚氰胺添加物比較 29
表4-2比較電解15分鐘後所得到的石墨烯重量 31
表4-3石墨烯表面EDS元素分析表 33
表4-4不同水洗次數下的氮濃度統計圖 37
表4-5石墨稀/高分子薄膜性質比較 44
表4-6本研究與過去文獻所提之製程之產率和性質分析表 50
參考文獻 [1] Rajni Garg; Naba K. Dutta; Namita Roy Choudhury. Work Function Engineering of Graphene. Nanomaterials. 2014, 4, 267-300
[2] Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim,P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. SolidState Commun. 2008, 146, 351-355.
[3] Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282-286.
[4] Kakaei, K.; Zhiani, M. A new method for manufacturing graphene and electrochemical characteristic of graphene-supported Pt nanoparticles in methanol oxidation. Journal of Power Sources 2013, 225, 356-363.
[5] Liu, C. G.; Yu, Z. N.; Neff, D.; Zhamu, A.; Jang, B. Z. Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano Lett. 2010, 10, 4863-4868.
[6] Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.; Kudo, T.; Honma, I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008, 8, 2277-2282.
[7] Shao, Y. Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. H. Graphene Based Electrochemical Sensors and Biosensors. A Review. Electroanalysis. 2010, 22, 1027-1036.
[8] Francesco Bonaccorso; Antonio Lombardo; Tawfique Hasan; Zhipei Sun; Luigi Colombo; Andrea C. Ferrari. Production and processing of graphene and 2d crystals. Material Today. 2012, 564-589.
[9] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos,S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thincarbon films. Science 2004, 306, 666-669.
[10] Martinez, A.; Fuse, K.; Yamashita, S. Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers. Appl. Phys. Lett. 2011, 99.
[11] Su, C. Y.; Lu, A. Y.; Wu, C. Y.; Li, Y. T.; Liu, K. K.; Zhang, W. J.; Lin, S.Y.; Juang, Z. Y.; Zhong, Y. L.; Chen, F. R.; Li, L. J. Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition. Nano Lett. 2011, 11, 3612-3616.
[12] Yu, Q. K.; Jauregui, L. A.; Wu, W.; Colby, R.; Tian, J. F.; Su, Z. H.; Cao, H. L.; Liu, Z. H.; Pandey, D.; Wei, D. G.; Chung, T. F.; Peng, P.; Guisinger, N. P.; Stach, E. A.; Bao, J. M.; Pei, S. S.; Chen, Y. P. Control andcharacterization of individual grains and grain boundaries in graphene grownby chemical vapour deposition. Nat. Mater. 2011, 10, 443-449.
[13] Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.;Dresselhaus, M. S.; Kong, J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30-35.
[14] Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff,R. S. Graphene and Graphene Oxide: Synthesis, Properties, andApplications. Adv. Mater. 2010, 22, 3906-3924.
[15] Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228-240.
[16] Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O′Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P.; Higgins, T.; Barwich, S.; May, P.; Puczkarski, P.; Ahmed, I.; Moebius, M.; Pettersson, H.; Long, E.; Coelho, J.; O′Brien, S. E.; McGuire, E. K.; Sanchez, B. M.; Duesberg, G. S.; McEvoy, N.; Pennycook, T. J.; Downing, C.; Crossley, A.; Nicolosi, V.; Coleman, J. N. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624-630.


[17] Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun′ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. High-yield production of graphene by liquidphase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563-568.
[18] K. S. Novoselov ; V. I. Falko ; L. Colombo ; P. R. Gellert ; M. G. Schwab ; K. Kim. A roadmap for graphene. Nature. 2012, 490, 192–200.
[19] K. S. Novoselov ; A. H. Castro Neto; Two-dimensional crystals-based heterostructures: materials with tailored properties. Phys Scr. 2012.
[20] Xuesong Li ; Weiwei Cai ; Luigi Colombo ; Rodney S. Ruoff. Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Lett. 2009, 9, 4268.
[21] Priti Xavier et al., Reduced graphene oxide induced phase miscibility in polystyrene–poly(vinyl methyl ether) blends. RSC Adv. 2014, 4, 12376–12387.
[22] Dreyer, D.R et al., The chemistry of graphene oxide. Chemical Society Reviews. 2010, 228-240.
[23] Lei Liuet al., A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces, RSC Adv., 2014, 4, 36464–36470
[24] Leon, V.; Rodriguez, A. M.; Prieto, P.; Prato, M.; Vazquez, E. Exfoliation of Graphite with Triazine Derivatives under Ball-Milling Conditions: Preparation of Few-Layer Graphene via Selective Noncovalent Interactions. ACS Nano 2014, 8, 563-571.
[25] Jeon et al., Edge-carboxylated graphene nanosheets via ball milling. PNAS. 2012, 5588-5593.
[26] Su, C. Y.; Lu, A. Y.; Xu, Y. P.; Chen, F. R.; Khlobystov, A. N.; Li, L. J. High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. ACS Nano 2011, 5, 2332-2339.


[27] Lu, J.; Yang, J. X.; Wang, J. Z.; Lim, A. L.; Wang, S.; Loh, K. P. One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano 2009, 3, 2367-2375.
[28] Parvez, K.; Wu, Z. S.; Li, R. J.; Liu, X. J.; Graf, R.; Feng, X. L.; Mullen, K. Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts. J. Am. Chem. Soc. 2014, 136, 6083-6091.
[29] Kim, H.; Abdala, A. A.; Macosko, C. W. Graphene/Polymer Nanocomposites. Macromolecules 2010, 43, 6515-6530.
[30] Bin Shen et al., Enhanced interfacial interaction between polycarbonate and thermally reduced graphene induced by melt blending.Composites. Science and Technology. 2013, 109–116.
[31] Cancado, L. G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y. A.; Mizusaki, H.; Jorio, A.; Coelho, L. N.; Magalhaes-Paniago, R.; Pimenta, M. A. General equation for the determination of the crystallite size L-a of nanographite by Raman spectroscopy. Appl. Phys. Lett. 2006, 88.
[32] Cancado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11, 3190-3196.
[33] Soo Min Kim; Ki Kang Kim; Young Woo Jo; Min Ho Park; Seung Jin Chae; Dinh Loc Duong; Cheol Woong Yang; Jing Kong; and Young Hee Lee. Role of Anions in the AuCl3-Doping of Carbon Nanotubes. ACS Nano. 2011, 1236-1242.
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2016-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明