博碩士論文 102323094 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.237.178.91
姓名 楊樺成(Hwa-sheng Yong)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 深冷變形與陽極處理對6066-T6機械性質的影響
(Effect of Cryogenic deformation and anodized treatment on AA6066-T6 mechanical properties)
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在這項研究中,鋁合金6066經過退火後深冷鍛造,再進行固溶處理和頂時效處理。深冷鍛造鋁合金與傳統的鋁合金6066-T6合金相比,深冷鍛造鋁合金在延展性增加35%,但在UTS和YS上卻犧牲了大約8%。陽極處理對於6066-T6有/無深冷鍛試片的抗腐蝕能力一併加以量測和討論。
摘要(英) In this study, AA6066 alloy samples were cryogenically forged after annealing and then subjected to solution and aging treatments. Compared with conventional 6066-T6 alloy samples, the cryogenically forged samples exhibited a 35% increase in elongation but sacrificed about 8% in UTS and YS. The effect of anodization on the corrosion resistance of 6066-T6 with/without cryogenically-forged samples was also investigated, and the results are discussed in this study.
關鍵字(中) ★ 鋁合金6066-T6
★ 深冷鍛造
★ 析出物
★ 陽極處理
關鍵字(英) ★ AA6066-T6
★ cryogenic forging
★ precipitates
★ anodized
論文目次 摘要 ………………………………………………………………………………………………………………………………………I
Abstract……………………………………………………………………………………………………………………………………II
圖目錄 ………………………………………………………………………………………………………………………………………V
表目錄 …………………………………………………………………………………………………………………………………VII
第一章 前言………………………………………………………………………………………………………………………………1
第二章 文獻回顧……………………………………………………………………………………………………………………2
2-1 Al-Mg-Si簡介………………………………………………………………………………………………………………3
2-1-1 Al-Mg-Si-Cu簡介…………………………………………………………………………………………………4
2-1-2 Al-Mg-Si-Cu合金之析出硬化熱處理…………………………………………………………5
2-1-3 鋁合金深冷變形對於機械性質與析出物影響…………………………………………6
2-1-4 鋁銅合金深冷鍛造…………………………………………………………………………………………………9
2-1-5 鋁鎂矽合金深冷鍛造…………………………………………………………………………………………11
2-2 鋁合金陽極處理…………………………………………………………………………………………………………13
2-2-1 合金元素對鋁合金陽極氧化膜差異……………………………………………………………15
2-2-2 時效後析出物對陽極之影響…………………………………………………………………………19
2-2-3 鋁合金應力腐蝕破壞…………………………………………………………………………………………21
2-3 疲勞破壞的簡介…………………………………………………………………………………………………………22
2-3-1 高週反覆應力對析出物影響…………………………………………………………………………22
2-3-2 鋁合金的疲勞裂縫起始與成長………………………………………………………………………23
2-3-3 動態析出物對疲勞壽命的影響………………………………………………………………………24
2-3-4 鋁合金陽極處理對於疲勞性質的影響………………………………………………………25
第三章 實驗步驟…………………………………………………………………………………………………………………27
3-1 實驗材料……………………………………………………………………………………………………………27
3-2 實驗儀器………………………………………………………………………………………………………………………27
3-3 實驗步驟………………………………………………………………………………………………………………………29
第四章 結果與討論…………………………………………………………………………………………………………34
4-1 鋁合金6066有/無深冷鍛造之熱處理……………………………………………………………34
4-1-1 深冷鍛造對硬度與拉伸性質的影響…………………………………………………………34
4-1-2 深冷鍛造後對晶界角度的變化影響……………………………………………………………35
4-1-3 二次相顆粒之電子微探針分析(EPMA)………………………………………………………37
4-1-4 微結構與晶粒尺寸………………………………………………………………………………………………39
4-1-5 二次相顆粒(second phase particles)數目與尺寸量測…………41
4-1-6 TEM微結構觀察………………………………………………………………………………………………………43
4-1-7 T6與CFII-T6之二次相與析出物X-ray繞射分析…………………………………43
4-2 有/無深冷鍛造對6066-T6試片的腐蝕電位測試………………………………………44
4-3 有/無深冷鍛造對6066-T6對S-N曲線量測…………………………………………………49
4-4 陽極處理對6066-T6抗腐蝕能力與疲勞強度的影響………………………50
4-4-1 腐蝕電位與腐蝕電流…………………………………………………………………………………………50
4-4-2 陽極處理對基地氫含量影響…………………………………………………………………………50
4-4-3 陽極處理對S-N曲線的影響……………………………………………………………………………51
第五章 結論……………………………………………………………………………………………………………………………52
參考文獻 ……………………………………………………………………………………………………………………………………53
參考文獻 [1]日本輕金屬學會委員, “鋁合金之組織與性質”, 日本輕金屬學 會,
pp.278, 1991
[2] L. Zhen, W. D. Fei, S. B. Kang, H. W. kim,“Precipitation
behaviour of Al-Mg-Si alloys with high silicon content”,
Journal of Materials Science 32, pp.1895-1902, 1997
[3] Mahoto Takeda, Fumiyoshi Ohkubo, Tomohisa Shirai,
Kouichiro Fukui, “Precipitation behaviour of Al-Mg-Si
ternary alloys”, Materials Science Forum, vol.217-222,
pp.815-820, 1996
[4] D.Apelian, S.Shivkumar, G.Sigworth, “Fundamental Aspects
of Heat Treatment of Cast Al-Si-Mg Alloys”, AFS
Transactions, pp.727-741
[5] Chakrabarti DJ, Laughlin DE. Progress in Mater Sci
2004;49:389
[6] Rangaraju N, Raghuram T, Krishna BV, Rao KP, Venugopal
P. Mater Sci Eng A 2005;398:246.
[7] Y.M. Wang, E. Ma, M.W. Chen, Appl. Phys. Lett. 80 (2002)
2395.
[8]Y. J. Chen, H. J. Roven, S. S. Girseeh, P. C. Skaret, J.
Hjelen, "Quantitative study of grain refinement in Al-Mg
alloy processed by equal channel angular pressing at
cryogenic temperature", Material Letters, Vol. 65,
pp.3472-3475, 2011
[9]Dharmendra Singh, P. N. Rao, R. Jayaganthan, "Effect of
deformation temperature on mechanical properties of ultra
fine grained Al-Mg alloy processed by rolling", Materials
and Design, Vol.50, pp.646-655, 2013
[10]Y. B. Lee, D. H. Shih, K. T. Park, W. J. Nam, "Effect of
annealing temperature on microstructure and mechanical
properties of a 5083 Al alloy deformed at cryogenic
temperature", Scripta Materialia, Vol.51, pp.355-359,
2004
[11] U. G. Kang, J. C. Lee, S. W. Jeong, W. J. Nam, "The
improvement of strength and ductility in ultrafine
grained 5052 Al alloy by cryogenic- and warm-rolling",
Journal of Material Science, Vol.45, pp.4739-4744, 2010
[12] U. G. Gang, S. H. Lee, S. W. Jeong, W. J. Nam, "The
evolution of microstructure and
mechanical properties of a 5052 Aluminum alloy by the
application of cryogenic rolling and warm rolling",
Material Transaction , Vol.50, pp.82-86, 2009
[13] S. K. Panigrahi, R. Jayagathan, "A study on mechanical
properties of cryorolled Al-Mg-Si alloy", Material
Science and Engineering A, Vol.480, pp.299-305, 2008
[14] Sushanta Kumar Panigrahi, R. Jayaganthan, V. Chawla,
"Effect of cryorolling on microstructure of Al-Mg-Si
alloy ", Materials Letters, Vol.62, pp.2626-2639, 2008
[15] S. K. Panigrahi, R. Jayagathan, "Development of
ultrafine grained Al 6063 alloy by cryorolling with
optimized initial heat treatment conditions", Materials
and Design, Vol.32, pp.2172-2180, 2011
[16] K. Gopala Krishna, K. Sivaprasad, T.S.N. Sankara
Narayanan, K.C. Kumar, "Localized corrosion of an
ultrafine grained Al-4Zn-2Mg alloy produced by
cryorolling", Corrosion Science, Vol.60, pp.82-89, 2012
[17]K. Gopala Krishna, K. Sivaprasad, T.S.N. Sankara
Narayanan, K. Venkateswarlu, K.C. Kumar, "Microstructure
evolution and ageing behavior of cryorolled Al-4Zn-2Mg
alloy", Material Science and Engineering A, Vol.535,
pp.129-135, 2012
[18]T. Shanmugasundaram, B. S. Murty, V. S. Sarma,
"Development of ultra fine grained high strength Al-Cu
alloy by cryorolling", Scripta Materialia, Vol.54,
pp.2013-2017, 2006.
[19]S. Cheng , Y.H. Zhao, Y.T. Zhu, E. Ma, "Optimizing the
strength and ductility of fine
structured 2024 Al alloy by nano-precipitation ", Acta
Materialia, Vol.55, pp.5822-5832, 2007 .
[20] P. Nageswara rao, R. Jayaganthan, "Effects of warm
rolling and ageing after cryogenic rolling on mechanical
properties and microstructure of Al 6061 alloy ",
Materials and Design, Vol.39, pp.226-233, 2012
[21] C. C. Chen, J. H. Chen, C. G. Chao, " Post-treatment
method of producing ordered array of anodic aluminum
oxide using general purity commercial (99.7%) aluminum
", Japanese Journal of applied Physics, Vol.44, pp.1529
1533, 2005
[22] K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K.
Nielsch, U. Gösele, "Self ordered anodic aluminum oxide
formed by H2SO4 Hard Anodization", ACS Nano, Vol. 2,
pp.302-310, 2008
[23]M. Noormohammadi, M. Moradi, "Structural engineering of
nanoporous alumina by direct cooling the barrier layer
during the aluminum hard anodization", Materials
Chemistry and Physics, Vol.135, pp.1089-1095, 2012
[24]D. R. Gabe, " Hard anodizing - What do we mean by
hard?", Metal Finishing, pp.52-57, 2002
[25]TSANGARAKI-KAPLANOGLOU, S. THEOHARI, TH. DIMOGERONTAKIS,
Y.M. WANG, H.H. KUO, S. KIA, “Effect of alloy types on
the anodizing process of aluminum” SURFACE AND COATINGS
TECHNOLOGY, 200, (2006) P.2634
[26] X. Zhou, G.E. Thompson, P. Skeldon, G.C. Wood, K.
Shimizu, H. Habazaki, Corrosion Sci. 41 (1999) 1599.
[27] Y. Liu, P. Skeldon, G.E. Thompson, H. Habazaki, Corros.
Sci. 44 (2002) 1133.
[28] H. Habazaki, X. Zhou, K. Shimizu, P. Skeldon, G.E.
Thompson, G.C. Wood, Electrochim. Acta 42 (17) (1997)
2627
[29] K. Mukhopadhyay, A.K. Sharma, Surf. Coat. Technol. 92
(1997) 212.
[30] L.E. Fratila-Apachitei, F.D. Tichelaar, G.E. Thompson,
H. Terryn, P. Skeldon, J. Duszczyk, L. Katgerman,
Electrochim. Acta 49 (2004) 3169
[31]Y. S. Huang, T. S. Shih, C. E. Wu, "Electrochemical
behavior of anodized AA6063-T6
alloys affected by matrix structures", Applied surface
Science, Vol.264, pp.410-418, 2013
[32] Y. S. Huang, T. S. Shih, J. H. Chou, "Electrochemical
behavior of anodized AA7075-T73 alloys affected by
matrix structures", Applied surface Science, Vol.283,
pp.249-257, 2013
[33] J.J. Thompsom﹐E.S. Tankins﹐V.S.Agarwala﹐“A heat treatment
for reducing corrosion and stress corrosion cracking
susceptibilities in 7xxx aluminum alloy”﹐Materials
Performance, vol.26, pp.45-52, 1987
[34]T.D. Burleigh, “The Postulated Mechanisms for Stress
Corrosion Cracking of Aluminum Alloys: A Review of the
Literature 1980-1989”, Corrosion, vol.47, pp.89-98, 1991
[35]G. Patton, C. Rinaldi , Y. Bre´chet , G. Lormand , R.
Fouge`res, " Study of fatigue damage in 7010 aluminum
alloy", Materials Science and Engineering A , vol.254 ,
pp. 207-218, 1998
[36]Chang R, Morris WL, Buck O., “Fatigue crack nucleation
at intermetallic particles in alloys a dislocation pile-
up model”, Scripta Metall ,vol. 13, pp.191,1979.
[37]Y. Xue , H. El Kadiri, M.F. Horstemeyer, J.B. Jordon, H.
Weiland ,"Micromechanisms of multistage fatigue crack
growth in a high-strength aluminum alloy", Acta
Materialia , Vol.55, pp.1975-1984, 2007
[38]G. Patton, C. Rinaldi , Y. Bre´chet , G. Lormand , R.
Fouge`res, " Study of fatigue damage in 7010 aluminum
alloy", Materials Science and Engineering A ,vol.254 ,
pp. 207-218, 1998
[39]W.Z. Han,Y. Chen,A. Vinogradov, C.R. Hutchinson,
“Dynamic precipitation during cyclic deformation of an
underaged Al–Cu alloy”, Materials Science and
Engineering A, vol.528, pp.7410-7416, 2011
[40]K. Genel, "The effect of pitting on the bending fatigue
performance of high-strength alloy", Scripta Materialia,
Vol.57, pp.297-300, 2007
[41] Ren, J., Zuo, Y., "The growth mechanism of pits in NaCl
solution under anodic films on aluminum", Surface and
Coatings Technology, Vol.191, pp.311-316, 2005
[42] Sadeler, R., "Effect of a commercial hard anodizing on
the fatigue property of a 2014-T6 aluminium alloy",
Journal of Materials Science, Vol.41, pp.5803-5809, 2006
[43] E. Cirik, K. Genel, " Effect of anodic oxidation on
fatigue performance of 7075-T6 alloy", Surface and
Coatings Technology, Vol.202, pp.5190-5201, 2008
[44] A. Camargo, H. Voorwald, " Influence of anodization on
the fatigue strength of 7050-T7451 aluminium alloy",
Fatigue and Fracture of Engineering Materials and
Structures, Vol.30, pp.993-1007, 2007
[45]B. Lonyuk, I. Apachitei, j. Duszczyk, " The effect of
oxide coatings on fatigue properties of 7475-T6
aluminium alloy", Surface and Coatings Technology,
Vol.201, pp.8688-8694, 2007
[46]M. Shahzad, M. Chaussumier, R. Chieragatti, C. Mabru, F.
Rezai Aria, " Influence of surface treatments on fatigue
life of Al 7010 alloy", Journal of Materials Processing
Technology, Vol.210, pp.1821-1826, 2010
[47] Y. Du, Y. A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu,
Z. Yuan, Y. Liu, Y. He, and F. Y. Xie, Mater. Sci. Eng.,
A 363, 140 2003.
[48] K. Matsuda, D. Teguri, T. Sato, Y. Uetani, S. Ikeno,
Mater. Trans. 48 (2007) 967–974
[49] P.S. De,R.S. Mishra,“Microstructural evolution during
fatigue of ultrafine grained aluminum alloy”,Materials
Science and Engineering A,vol.527,pp.7719-7730,2010
[50] S.K. Panigrahi, R. Jayaganthan, V. PancholiEffect of
plastic deformation conditions on microstructural
characteristics and mechanical properties of Al 6063
alloy Mater Des, vol30, pp. 1894–1901, 2009
[51] T.S. Shih, T.H. Lee, Y.J. Jhou, The effects of
anodization treatment on the microstructure and fatigue
behavior of 7075-T73 aluminum alloy, Mater. Trans. 55
(2014) 1280–1285.
[52] R.P. Wei, C.-M. Liao, M. Gao, Metall. Mater. Trans. A
29A (1998) 1153.
[53] M. K. Cavanaugh, R. G. Buchheit, and N. Birbilis, Eng.
Fract. Mech., 76, 641 2009.
[54] N. Birbilis and R. G. Buchheit, J. Electrochem. Soc.,
152, B140 2005.
[55]廖廷瑋〝深冷鍛造與陽極處理對鋁合金7075的疲勞性質及微機構影響
研究〞,碩士論文,民國103年,國立中央大學
[56] T.S. Shih, Y.W. Chiu, Corrosion resistance and high-
cycle fatigue strength of anodized/sealed AA7050 and
AA7075 alloys, Applied surface Science, Vol.351, pp.997-
1003, 2015
[57] A.C. Vieira, A.M. Pinto, L.A. Rocha, S. Mischler,
Electrochimica Acta 56 (2011) 3821.
[58] G. Yahr: J. Pressure Vessel Technol. vol119, 211-215,
1997
[59] L. Iglesias-Rubianes, P. Skeldon, G.E. Thompson, U.
Kreissig, D. Grambole,H. Habazaki, K. Shimizu, ”
Behaviour of hydrogen impurity in aluminium alloys
during anodizing”, Thin Solid Films, vol424, pp.201~207,
2003
[60] S. E. Benjamin, Fazal A. Khalid,” Stress Generated on
Aluminum During Anodization as a Function of Current
Density and pH”, Oxidation of Metals, Vol. 52, Nos. 3/4,
1999
[61] J. A. M. Camargo, Herman Jacobus Cornelis,” Coating
residual stress effects on fatigue performance of 7050-
T7451 aluminum alloy”, Surface & Coatings Technology 201
9448 – 9455, 2007
指導教授 施登士(Teng-shih Shih) 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明