博碩士論文 102323095 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:34.204.176.189
姓名 廖思涵(Szu-Han Liao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 使用晶種直接固化法生長大尺寸太陽能多晶矽之熱流場與雜質傳輸數值分析
(Numerical Study of Thermal Flow Field and Impurity Transport during the Growth of Large Size Multicrystalline Silicon Ingots by the Seeded Directional Solidification Process)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 發展低生產成本及高品質多晶矽晶錠,對太陽能電池持續朝向市電平價的目標邁進,具關鍵重要地位。在多晶矽晶錠生長過程中,常見高濃度的碳與氧雜質,會在晶錠中形成差排導致太陽能電池轉換效率降低,因此,控制雜質濃度是影響晶錠品質之關鍵。

本研究中以有限體積法(FVM)進行數值模擬,使用晶種直接固化法模擬生長大尺寸多晶矽晶錠過程之熱流場與氧、碳雜質濃度場,將模擬結果與實際生長數據進行比較,數據由SAS公司測量晶錠內雜質濃度分佈。探討不同的熱場設計、調整氬氣流速與石墨上蓋板的設計對於氧與碳雜質濃度之影響。

由模擬結果顯示,熔湯的對流主要由浮力造成,對流形態隨生長過程固化的程度而改變,固液界面形狀大部分呈現凹向熔湯,使晶粒朝向中心軸生長。對於固液界面形狀的影響,透過調整坩堝支柱的間距與排列方式,以及加入保溫塊於爐體中,兩者藉以增加堝壁的軸向溫度梯度,使晶粒在堝壁生長的結晶速率降低且在中央區微凸,改善固液界面形狀,加熱器的輸出功率降低能達到節能熱場的效果。在晶錠生長過程中,流動型態對於雜質傳輸具重要影響。氬氣流速增加,能將更多從自由表面氣化的氧化矽氣體帶往爐體外,當氬氣流率增加為52.5slpm時,熔湯中有較低的雜質濃度。在固定氬氣流速下,調整不同的石墨上蓋板長度,藉此影響氣體區與熔湯的流動型態。當石墨上蓋板長度為四分之一且放置於坩堝上方時,熔湯中的流動型態在高固化分率時明顯改變,能使更多氧雜質從自由液面氣化再由氬氣帶往爐體外,對於降低雜質濃度有明顯效果。



關鍵字:多晶矽晶錠;晶種直接固化法;數值模擬

摘要(英) The multi-crystalline silicon (mc-Si) solar cells have the highest market share in the photovoltaics (PV) market. To accomplish the goal of grid parity, the production cost of silicon solar cell must be reduced further and the efficiency has to be improved. These are strongly dependent on the wafer production and quality. Nowadays the growth of large size mc-Si ingots with the high quality became the main development direction of wafer production. However the dislocation caused by the high concentration of oxygen and carbon in the mc-Si wafer can reduce the efficiency of solar cell. Therefore, the control of these impurities needs to be paid attention during growth process.

In the present study, the thermal flow field, the concentration of oxygen and carbon in seeded directional solidification system (DSS) are numerically investigated by CGSim (Crystal Growth Simulator) program of STR Inc. based on Finite Volume Method (FVM). The distributions of impurity concentration in the grown ingot measured by the SAS Company are compared with the computational results. In addition, the effects of the hot zone and the graphite cover design on impurity content are also discussed.

The simulation results show that the melt convection is induced by buoyancy force and the flow pattern in the melt changes during the growth process. Most of the c-m interface is concave to the melt. Therefore the grain tends to grow toward the center axis. The flatter c-m interface shape can be gotten by changing the position of crucible support and arrangement method. Moreover, the vertical temperature gradient at the crucible wall increases as the insulation block is added in the furnace. The c-m interface becomes more convex at the central section and its slope at the crystal wall section is reduced. That to reduce the heating consumption to obtain the favorite interface shape and enhance the energy saving. In the growth process, the flow pattern is a major impact affected the transport of impurity. Increasing the argon gas flow rate can bring more evaporated silicon monoxide above the free surface outwards the furnace. It is found that the impurity concentration in silicon melt gets lower when argon flow rate is 52.2slpm. The effect of different lengths of graphite cover on impurity transport was also investigated at a fixed argon flow rate. The graphite cover affects the gas and melt flow pattern in the chamber, which affect the transport of carbon monoxide and silicon monoxide in the gas as well as oxygen and carbon in the melt. The melt flow pattern was significantly changed at the higher solidification fraction when the graphite cover length is a quarter. This results in the larger amount of impurity evaporated out of the free melt surface.





Keywords: Multi-crystalline silicon ingot; Seeded Direction Solidification;

關鍵字(中) ★ 多晶矽晶錠
★ 晶種直接固化法
★ 數值模擬
關鍵字(英) ★ Multi-crystalline silicon ingot
★ Seeded Direction Solidification
★ Numerical Simulation
論文目次 摘要i

Abstract ii

目錄 iv

圖目錄 vi

表目錄 xi

符號說明 xii

第一章 緒論 1

1-1 研究背景與文獻回顧 1

1-1-1 多晶矽太陽能電池之研究 2

1-1-2 直接固化法生長多晶矽晶錠之研究 4

1-1-3 大尺寸多晶矽晶錠之研究 6

1-1-4 多晶矽晶錠之熱流場與雜質傳輸研究 7

1-2 研究動機與目的 10

第二章 研究方法 16

2-1 物理系統 16

2-2 基本假設 17

2-3 數學模式與邊界條件 17

2-3-1 統御方程式 17

2-3-2 熱場邊界條件 19

2-3-3 流場邊界條件 20

2-3-4 雜質邊界條件 21

2-4 紊流計算模式 24

2-5 無因次參數 26

2-6 數值方法與網格、收斂條件測試 28

2-6-1 數值方法 28

2-6-2 網格測試與收斂條件測試 29

第三章 結果與討論 40

3-1 標準型DSS爐體之多晶矽模擬 40

3-1-1 標準型DSS爐體多晶矽模擬結果 40

3-1-2 標準型DSS爐體多晶矽模擬之熱、流場分析 41

3-1-3 標準型DSS爐體多晶矽模擬之雜質分析 42

3-2 坩堝支柱設計對於固液界面形狀的影響 44

3-2-1 不同坩堝支柱之間距 44

3-2-2 不同坩堝支柱排列設計 46

3-3 調整加熱器位置的影響 46

3-4 修改型DSS爐體之多晶矽模擬 47

3-4-1 保溫塊設計 47

3-4-2 固液界面形狀 48

3-4-3 節能熱場 49

3-5 氬氣流量對多晶矽晶錠雜質分佈的影響 50

3-6 石墨上蓋板設計對多晶矽晶錠雜質分佈的影響 51

第四章 結論與未來研究 97

4-1 結論 97

4-2 未來研究 98

參考文獻 99

參考文獻 [1] 鄭名山,⌈太陽能發電簡介⌋,物理雙月刊,vol. 29卷3期,pp. 707-716, 2007.

[2] L. L. Kazmerski, "Solar photovoltaics R&D at the tipping point: A 2005 technology overview," Journal of Electron Spectroscopy and Related Phenomena, vol. 150, pp. 105-135, 2006.

[3] A. Müller, M. Ghosh, R. Sonnenschein, and P. Woditsch, "Silicon for photovoltaic applications," Materials Science and Engineering: B, vol. 134, pp. 257-262, 2006.

[4] R. W. Miles, K. M. Hynes, and I. Forbes, "Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues," Progress in Crystal Growth and Characterization of Materials, vol. 51, pp. 1-42, 2005.

[5] F. Ferrazza, "Large size multicrystalline silicon ingots," Solar Energy Materials and Solar Cells, vol. 72, pp. 77-81, 2002.

[6] T. Surek, "Crystal growth and materials research in photovoltaics: progress and challenges," Journal of Crystal Growth, vol. 275, pp. 292-304, 2005.

[7] S. Hisamatsu, H. Matsuo, S. Nakano, and K. Kakimoto, "Numerical analysis of the formation of Si3N4 and Si2N2O during a directional solidification process in multicrystalline silicon for solar cells," Journal of Crystal Growth, vol. 311, pp. 2615-2620, 2009.

[8] H. Matsuo, R. Bairava Ganesh, S. Nakano, L. Liu, K. Arafune, Y. Ohshita, et al., "Effect of crucible rotation on oxygen concentration during unidirectional solidification process of multicrystalline silicon for solar cells," Journal of Crystal Growth, vol. 311, pp. 1123-1128, 2009.

[9] C. Winneker, "Global Market Outlook for Photovoltaics until 2016. ," EPIA report, 2012.

[10] W. Hoffmann, "PV solar electricity industry: Market growth and perspective," Solar Energy Materials and Solar Cells, vol. 90, pp. 3285-3311, 2006.

[11] H. J. Möller, C. Funke, M. Rinio, and S. Scholz, "Multicrystalline silicon for solar cells," Thin Solid Films, vol. 487, pp. 179-187, 2005.

[12] K. Arafune, E. Ohishi, H. Sai, Y. Ohshita, and M. Yamaguchi, "Directional solidification of polycrystalline silicon ingots by successive relaxation of supercooling method," Journal of Crystal Growth, vol. 308, pp. 5-9, 2007.

[13] D. Franke, T. Rettelbach, C. Häßler, W. Koch, and A. Müller, "Silicon ingot casting: process development by numerical simulations," Solar Energy Materials and Solar Cells, vol. 72, pp. 83-92, 2002.

[14] S. Pizzini, "Towards solar grade silicon: Challenges and benefits for low cost photovoltaics," Solar Energy Materials and Solar Cells, vol. 94, pp. 1528-1533, 2010.

[15] A. A. Istratov, T. Buonassisi, M. D. Pickett, M. Heuer, and E. R. Weber, "Control of metal impurities in “dirty” multicrystalline silicon for solar cells," Materials Science and Engineering: B, vol. 134, pp. 282-286, 2006.

[16] T. Saitoh, X. Wang, H. Hashigami, T. Abe, T. Igarashi, S. Glunz, et al., "Suppression of light degradation of carrier lifetimes in low-resistivity CZ–Si solar cells," Solar Energy Materials and Solar Cells, vol. 65, pp. 277-285, 2001.

[17] K. Fujiwara, Y. Obinata, T. Ujihara, N. Usami, G. Sazaki, and K. Nakajima, "Grain growth behaviors of polycrystalline silicon during melt growth processes," Journal of Crystal Growth, vol. 266, pp. 441-448, 2004.

[18] K. Fujiwara, W. Pan, N. Usami, K. Sawada, M. Tokairin, Y. Nose, et al., "Growth of structure-controlled polycrystalline silicon ingots for solar cells by casting," Acta Materialia, vol. 54, pp. 3191-3197, 2006.

[19] Z. Xi, J. Tang, H. Deng, D. Yang, and D. Que, "A model for distribution of oxygen in multicrystalline silicon ingot grown by directional solidification," Solar Energy Materials and Solar Cells, vol. 91, pp. 1688-1691, 2007.

[20] H. Matsuo, R. Bairava Ganesh, S. Nakano, L. Liu, Y. Kangawa, K. Arafune, et al., "Thermodynamical analysis of oxygen incorporation from a quartz crucible during solidification of multicrystalline silicon for solar cell," Journal of Crystal Growth, vol. 310, pp. 4666-4671, 2008.

[21] H. Matsuo, R. Bairava Ganesh, S. Nakano, L. Liu, K. Arafune, Y. Ohshita, et al., "Analysis of oxygen incorporation in unidirectionally solidified multicrystalline silicon for solar cells," Journal of Crystal Growth, vol. 310, pp. 2204-2208, 2008.

[22] D. Yang, L. Li, X. Ma, R. Fan, D. Que, and H. J. Moeller, "Oxygen-related centers in multicrystalline silicon," Solar Energy Materials and Solar Cells, vol. 62, pp. 37-42, 2000.

[23] R. Kvande, L. Arnberg, and C. Martin, "Influence of crucible and coating quality on the properties of multicrystalline silicon for solar cells," Journal of Crystal Growth, vol. 311, pp. 765-768, 2009.

[24] NREL, "Best Research-Cell Efficiencies," 2012.

[25] J. C. Heinrich and D. R. Poirier, "Convection modeling in directional solidification," Comptes Rendus Mécanique, vol. 332, pp. 429-445, 2004.

[26] P. Mazumder and R. Trivedi, "Integrated simulation of thermo-solutal convection and pattern formation in directional solidification," Applied Mathematical Modelling, vol. 28, pp. 109-125, 2004.

[27] R. Sampath and N. Zabaras, "Numerical Study of Convection in the Directional Solidification of a Binary Alloy Driven by the Combined Action of Buoyancy, Surface Tension, and Electromagnetic Forces," Journal of Computational Physics, vol. 168, pp. 384-411, 2001.

[28] I. Steinbach and M. Apel, "Phase-field simulation of rapid crystallization of silicon on substrate," Materials Science and Engineering: A, vol. 449–451, pp. 95-98, 2007.

[29] S. Martinuzzi, I. Périchaud, and O. Palais, "Segregation phenomena in large-size cast multicrystalline Si ingots," Solar Energy Materials and Solar Cells, vol. 91, pp. 1172-1175, 2007.

[30] "International Technology Roadmap for Photovoltaic," vol. Sixth Edition, 2015.

[31] F. Dupret, P. Nicodème, Y. Ryckmans, P. Wouters, and M. J. Crochet, "Global modelling of heat transfer in crystal growth furnaces," International Journal of Heat and Mass Transfer, vol. 33, pp. 1849-1871, 1990.

[32] M. D. T. Saitoh, K. Kamisako, T. Hirasawa, T. Eguchi and I. Yamaga, , "Numerical Simulation of Directional Solidification Processes for High-Quality Silicon Ingots," 15th International Photovoltaic Science & Engineering Conference, pp. 110-113, 2005.

[33] H. Miyazawa, L. Liu, and K. Kakimoto, "Numerical analysis of influence of crucible shape on interface shape in a unidirectional solidification process," Journal of Crystal Growth, vol. 310, pp. 1142-1147, 2008.

[34] H. Miyazawa, L. Liu, S. Hisamatsu, and K. Kakimoto, "Numerical analysis of the influence of tilt of crucibles on interface shape and fields of temperature and velocity in the unidirectional solidification process," Journal of Crystal Growth, vol. 310, pp. 1034-1039, 2008.

[35] B. Wu, N. Stoddard, R. Ma, and R. Clark, "Bulk multicrystalline silicon growth for photovoltaic (PV) application," Journal of Crystal Growth, vol. 310, pp. 2178-2184, 2008.

[36] X. Ma, L. Zheng, H. Zhang, B. Zhao, C. Wang, and F. Xu, "Thermal system design and optimization of an industrial silicon directional solidification system," Journal of Crystal Growth, vol. 318, pp. 288-292, 2011.

[37] H. Zhang, L. Zheng, X. Ma, B. Zhao, C. Wang, and F. Xu, "Nucleation and bulk growth control for high efficiency silicon ingot casting," Journal of Crystal Growth, vol. 318, pp. 283-287, 2011.

[38] C. W. Lan, W. C. Lan, T. F. Lee, A. Yu, Y. M. Yang, W. C. Hsu, et al., "Grain control in directional solidification of photovoltaic silicon," Journal of Crystal Growth, vol. 360, pp. 68-75, 2012.

[39] C. Ding, M. Huang, G. Zhong, L. Ming, and X. Huang, "A design of crucible susceptor for the seeds preservation during a seeded directional solidification process," Journal of Crystal Growth, vol. 387, pp. 73-80, 2014.

[40] D. Zhu, L. Ming, M. Huang, Z. Zhang, and X. Huang, "Seed-assisted growth of high-quality multi-crystalline silicon in directional solidification," Journal of Crystal Growth, vol. 386, pp. 52-56, 2014.

[41] Z. Li, L. Liu, X. Liu, Y. Zhang, and J. Xiong, "Heat transfer in an industrial directional solidification furnace with multi-heaters for silicon ingots," Journal of Crystal Growth, vol. 385, pp. 9-15, 2014.

[42] L. Chen and B. Dai, "Optimization of power consumption on silicon directional solidification system by using numerical simulations," Journal of Crystal Growth, vol. 354, pp. 86-92, 2012.

[43] W. Ma, G. Zhong, L. Sun, Q. Yu, X. Huang, and L. Liu, "Influence of an insulation partition on a seeded directional solidification process for quasi-single crystalline silicon ingot for high-efficiency solar cells," Solar Energy Materials and Solar Cells, vol. 100, pp. 231-238, 2012.

[44] Q. Yu, L. Liu, W. Ma, G. Zhong, and X. Huang, "Local design of the hot-zone in an industrial seeded directional solidification furnace for quasi-single crystalline silicon ingots," Journal of Crystal Growth, vol. 358, pp. 5-11, 2012.

[45] X. Qi, W. Zhao, L. Liu, Y. Yang, G. Zhong, and X. Huang, "Optimization via simulation of a seeded directional solidification process for quasi-single crystalline silicon ingots by insulation partition design," Journal of Crystal Growth, vol. 398, pp. 5-12, 2014.

[46] Y.-Y. Teng, J.-C. Chen, C.-W. Lu, and C.-Y. Chen, "Numerical investigation of oxygen impurity distribution during multicrystalline silicon crystal growth using a gas flow guidance device," Journal of Crystal Growth, vol. 360, pp. 12-17, 2012.

[47] B. Gaoz,S. Nalano, K. Kalimoto. "Global simulation of coupled carbon and oxygen transport in a unidirectional solidification furnace for solar cells," ournal of The Electrochemical Society, vol. 157, pp. H153-H159, 2010.

[48] B. Gao, S. Nakano, and K. Kakimoto, "Effect of crucible cover material on impurities of multicrystalline silicon in a unidirectional solidification furnace," Journal of Crystal Growth, vol. 318, pp. 255-258, 2011.

[49] Y.-Y. Teng, J.-C. Chen, C.-W. Lu, and C.-Y. Chen, "The carbon distribution in multicrystalline silicon ingots grown using the directional solidification process," Journal of Crystal Growth, vol. 312, pp. 1282-1290, 2010.

[50] Y.-Y. Teng, J.-C. Chen, C.-W. Lu, H.-I. Chen, C. Hsu, and C.-Y. Chen, "Effects of the furnace pressure on oxygen and silicon oxide distributions during the growth of multicrystalline silicon ingots by the directional solidification process," Journal of Crystal Growth, vol. 318, pp. 224-229, 2011.

[51] V. V. Kalaev, I. Y. Evstratov, and Y. N. Makarov, "Gas flow effect on global heat transport and melt convection in Czochralski silicon growth," Journal of Crystal Growth, vol. 249, pp. 87-99, 2003.

[52] V. V. Kalaev, D. P. Lukanin, V. A. Zabelin, Y. N. Makarov, J. Virbulis, E. Dornberger, et al., "Calculation of bulk defects in CZ Si growth: impact of melt turbulent fluctuations," Journal of Crystal Growth, vol. 250, pp. 203-208, 2003.

[53] A.-S. Bonnet-Ben Dhia, È.-M. Duclairoir, G. Legendre, and J.-F. Mercier, "Time-harmonic acoustic propagation in the presence of a shear flow," Journal of Computational and Applied Mathematics, vol. 204, pp. 428-439, 2007.

[54] B. Debusschere and C. J. Rutland, "Turbulent scalar transport mechanisms in plane channel and Couette flows," International Journal of Heat and Mass Transfer, vol. 47, pp. 1771-1781, 2004.

[55] J. B. Bell, M. S. Day, C. A. Rendleman, S. E. Woosley, and M. A. Zingale, "Adaptive low Mach number simulations of nuclear flame microphysics," Journal of Computational Physics, vol. 195, pp. 677-694, 2004.

[56] R. Klein, "Semi-implicit extension of a godunov-type scheme based on low mach number asymptotics I: One-dimensional flow," Journal of Computational Physics, vol. 121, pp. 213-237, 1995.

[57] G. P. N. R.J. Riley, "Instability of thermocapillary–buoyancy convection in shallow layers. Part 1. Characterization of steady and oscillatory instabilities," Journal of Fluid Mechanics, vol. 359, pp. 143-164, 1998.

[58] "CGSim Flow Module Theory Manual.."

[59] 黃柏翔,⌈生長多晶矽之熱流場與雜質傳輸控制數值分析⌋,國立中央大學,碩士論文,2012.

[60] A. D. Smirnov and V. V. Kalaev, "Development of oxygen transport model in Czochralski growth of silicon crystals," Journal of Crystal Growth, vol. 310, pp. 2970-2976, 2008.

[61] 鄧應揚,⌈太陽能多晶矽晶錠固化生長之熱流場與雜質傳輸研究⌋,國立中央大學,博士論文,2011.

[62] A. D. Smirnov and V. V. Kalaev, "Analysis of impurity transport and deposition processes on the furnace elements during Cz silicon growth," Journal of Crystal Growth, vol. 311, pp. 829-832, 2009.

[63] G. A. S. R.I. Scace, "Solubility of Carbon in silicon and Germanium," Journal of Chemical Physics, vol. 30, pp. 1551-1555, 1959.

[64] L. Liu, S. Nakano, and K. Kakimoto, "Carbon concentration and particle precipitation during directional solidification of multicrystalline silicon for solar cells," Journal of Crystal Growth, vol. 310, pp. 2192-2197, 2008.

[65] A. Raufeisen, M. Breuer, T. Botsch, and A. Delgado, "DNS of rotating buoyancy– and surface tension–driven flow," International Journal of Heat and Mass Transfer, vol. 51, pp. 6219-6234, 2008.

[66] M. Wolfshtein, "The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient," International Journal of Heat and Mass Transfer, vol. 12, pp. 301-318, 1969.

[67] 鄧應楊,⌈多晶矽太陽能電池晶碇固化生長之熱流場研究⌋,國立中央大學,博士班資格考計畫書,2008.
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2015-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明