博碩士論文 102323098 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.221.13.173
姓名 黃傑泓(Jie-Hong Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以數值模擬與實驗驗證研究 精密深溝滾珠軸承多道次溫間鍛造製程 -缺陷分析與模具設計合理化
(Numerical analysis and experimental validation on multi- stage warm forging process of deep groove ball bearing --- defect analysis and tooling design rationalizationNumerical analysis and experimental validation on multi- stage warm forging process of deep groove ball bearing --- defect analysis and tooling design rationalization)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測
★ 精密閥件射出成形製程開發-CAE模擬與開模驗證★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證
★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究★ 複合式類神經網路預測貨櫃船主機油耗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文研究多道次溫鍛軸承模擬以及實驗分析,配合溫鍛模擬數值以及實驗結合,使模具合理化,分析鍛件產品不良品可能原因,設計變更模具,有效提升軸承產
量及穩定度,降低不良率發生,並延長模具壽命。 除此之外,為了瞭解到模擬與實際鍛件設計上的差異與情況,在執行每一階段的鍛造,保留每個階段性的鍛品與模擬情況作比對分析,比對三維/二維有限元素分析,謹慎地執行模擬與試驗的研究比較。
深溝滾珠軸承精密鍛造過程中,以成形鍛道次之完成鍛鍛造為最重要,其成形段道次的成形狀況,將直接影響到後製程的精度調整,與最終鍛品的精度情況;一般而言,軸承熱鍛成形時,常見的缺陷狀況有褶皺、偏料、不飽和、過飽和、外觀成形不良以及夾料等不良情況發生。因此透過模擬分析提早發現設計不良原因探討,淘汰不良品,並利用有限元素分析有效預測出材料偏移及模具偏心情況的發生、材料流動性不佳、模具冷卻水流量因素與材料體積控制等研究,研究出最佳化鍛件成形狀況,有效提升模具壽命以及鍛件產量。透過模擬分析發現鍛造缺陷在製程中發生原因探討,利用有限元素分析預測材料偏移情形、材料流動皺摺原因與材料體積不足等影響鍛品成形性未完全等充填問題。數值模擬結果表明,其設計之上沖頭的幾何形狀,上沖頭圓角(R2)設計與倒角(C2)設計上,其鍛造過程中,顯示不同的變形率(有效應變/有效應力分佈)和材料流動形態,模擬之準確性與實際鍛品比對驗證下所得之研究成果,對於鍛品的成形有明顯之差異。

此外,數值模擬和實驗驗證過程中其詳細的模具設計和尺寸的變化,在鍛品及沖頭的整體結構完整性上,對於鍛造過程,其穩定性上是相當重要的。此外,鍛造上所產生之廢料比,其所鍛造之方式產生之內外環上,可減少之廢料佔整體棒材體積而言約9%左右。再者,在其多道次溫鍛過程中其模具鍛造產量可達每小時10,000件內外環,而在整體鍛造上其鍛品具有完整之結構穩定性。
摘要(英) In this study, a multi-stage warm forging process for making bearing rings is numerically and
experimentally investigated. The aim of the study is to determine the crucial station of the finishing forging process such that the tool wear is prolonged and tool fracture should be minimized. In addition, in order to ensure the appropriateness of the suggested modification, a 3-dimensional finite element simulation on each sequence is performed, and carefully compared with experimental investigations.
Numerical simulations results indicate that the redesigned upper punch geometry, radius(R2) of the finishing forging process, demonstrates drastically different deformation rate (the effective strain/effective stress distribution) and material flow pattern, as compared with chamfer (C2) counterpart. Accuracy of the numerical models has been verified by comparing with experimental measurements . In addition, the numerically and experimentally validated process includes the detailed tooling design and dimension variation, which is of great importance in maintaining the overall structural integrity of the forging die/punch and thus, the stability of the whole process. Concerning on the waste ratio comparison, the method used steel rods are as raw material and the IR/OR rings form is given by hot/warm forging and sequential cold rolling processes and the waste ratio decreases to ~9%. Finally, it is shown that the multi-stage warm forging process in this study could be successfully applied to the high-quantity production (10,000 pieces/hr) of the IR/OR of the deep groove ball bearing with the stability and structural integrality of the whole process.
關鍵字(中) ★ 軸承
★ 熱/溫間鍛造
★ 有限元素分析
★ 鍛造實驗
★ 整體結構
關鍵字(英) ★ Ball bearing
★ Hot/Warm forging
★ Finite element method
★ Experiment
★ Structural integrity
論文目次 摘要---I
Abstract---III
致謝---V
目錄---VI
圖目錄---IX
表目錄---XIV
第一章 緒論---1
1-1 前言---1
1-2 研究動機及方法---2
1-3 實驗設備---3
第二章 文獻回顧---8
2-1 文獻回顧---8
2-2 熱/溫間鍛造成形特性---10
2-3 熱/溫間鍛造成形優點---11
2-4 熱/溫間鍛造成形缺點---12
第三章 多道次溫鍛對深溝滾珠軸承幾何鍛造工藝缺陷分析---13
3-1 完成鍛之鍛造工藝---13
3-1-1 傳統多道次溫鍛成形 ---13
3-1-2 多道次溫鍛鍛造---13
3-2 滾珠軸承鍛造工藝:機械性質及有限元素模型 ---16
3-2-1 機械性質---16
3-2-2 有限元素分析---20
3-3 完成鍛有限元素模擬分析---21
3-3-1 R2/C2不同沖頭設計下的模擬結果---21
3-3-2 完成鍛模擬微觀組織討論---26
第四章 溫間鍛造相異製程完成鍛分析與模具設計合理化---31
4-1 完成鍛溫間鍛造製程分析 ---31
4-1-1 兩種溫間鍛造方法---31
4-1-2 完成鍛鍛品鍛造工藝、機械性質---34
4-2 Type A階梯式鍛造完成鍛鍛品:模擬結果、機械性質---38
4-2-1 Type A 鍛品填充性模擬分析---38
4-2-2 Type A完成鍛缺陷分析---40
4-3 Type B 煎餅式鍛造完成品鍛品:實驗結果、機械性質分析---42 -
4-3-1 Type B 鍛品填充性模具設計、飽和度分析---42
4-3-2 Type B 溫鍛實驗鍛品、鍛品飽和度分析---44
4-3-3 Type B 溫鍛實驗鍛品不同水量、重量、飽和度關係---46
4-4 階梯式鍛品(Type A)/煎餅式鍛品(Type B)之機械性質---49
第五章 結論與未來展望---54
5-1 結論---54
5-2未來展望---56
參考文獻---57
參考文獻 [1] M. Arbak , A. E. Tekkaya , F. Özhan, Comparison of various preforms for hot forging of bearing rings, Journal of Materials Processing Technology, Volume 169, Issue 1, 30 October 2005, Pages 72–82
[2] J. Brändlein, P. Eschmann, L. Hasbargen, K. Weigand, Ball and Roller Bearings: Theory,
Design and Application, 3rd Edition, January 1999, Pages 642
[3] Y. Prasad, K.P. Rao, Materials modeling and finite element simulation of isothermal
forging of electrolytic copper, Materials & Design Volume 32, Issue 4, April 2011, Pages
1851–1858
[4] E. Z. Kim, S. I. Oh, Y. S. Lee , K.H. Na, Backward can extrusion of ultra-fine-grained bulk Al–Mg alloy fabricated by cryomilling and hydrostatic extrusion, Journal of Materials Processing Technology, Volume 201, Issues 1–3, 26 May 2008, Pages 163–167
[5] A. Kamouneh, Ni. Jun , D. Stephenson, R.Vriesen, G. DeGrace, Diagnosis of involutometric issues in flat rolling of external helical gears through the use of finite-element models, International Journal of Machine Tools and Manufacture,Volume 47, Issues 7–8, June 2007, Pages 1257–1262
[6] T. Kroiß , U. Engel, M. Merklein, Comprehensive approach for process modeling and optimization in cold forging considering interactions between process, tool and press, Journal of Materials Processing Technology ,Volume 213, Issue 7, July 2013, Pages 1118–1127
[7] L.Yuan, Z. Zhao, W. Shi, F. Xu, D. Shan, Isothermal forming of the large-size AZ80A
magnesium alloy forging with high mechanical properties, International Journal of Advanced
Manufacturing Technology Volume 78, Issue 9, June 2015, pp 2037-2047
[8] G. Faraji, H. Jafarzadeh, H.J. Jeong, M.M. Mashhadi, H.S. Kim, Numerical and experimental investigation of the deformation behavior during the accumulative back extrusion of an AZ91 magnesium alloy, Materials & Design Volume 35, March 2012, Pages 251–258
[9] T.W. Ku, B.S. Kang, Tool design for inner race cold forging with skew-type cross ball grooves, Journal of Materials Processing Technology, Volume 214, Issue 8, August 2014, Pages 1482–1502
[10] M.C. Lee, S.H. Chung, S.M. Jang, M.S. Joun, Three-dimensional simulation of forging using tetrahedral and hexahedral elements, Finite Elements in Analysis and Design Volume 45, Issue 11, September 2009, Pages 745–754
[11] L. Xinbo, X. Hongsheng, Z. Zhiliang, Flow stress of carbon steel 08F in temperature range of warm-forging. Journal of Materials Processing Technology, Volume 139, Issues 1–3, 20 August 2003, Pages 543–546
[12] H. Ou, J. Lan, C.G. Armstrong, M.A. Price. An FE simulation and optimization approach
for the forging of aeroengine components, Journal of Materials Processing Technology,
Volume 151, Issues 1–3, 1 September 2004, Pages 208–216
[13] K.T. Wan, K.L. Ho , K.B. Soo, Multi-stage cold forging and experimental investigation
for the outer race of constant velocity joints, Materials & Design,Volume 49, August 2013,
Pages 368–385
[14] T.W. Ku , L.H. Kim, B.S. Kang, Process Simplification of Multi-Stage Forging for the
Outer Race of a CV Joint, Materials and Manufacturing Processes, Volume 29, 2014, Issue 2,
[15] G.J. Kang, J. Kim, B.S. Kang, Numerical and experimental evaluation for elastic deformation of a cold forging tool and workpiece for a sleeve cam of an automobile start motor, Journal of Engineering Manufacture, Volume. 222 ,February 1 2008, no. 2 217-224
[16] I. Puertas, C. Pérez, D. Salcedo, J. León, J.P. Fuertes, R. Luri, Design and mechanical property analysis of AA1050 turbine blades manufactured by equal channel angular extrusion and isothermal forging, Materials & Design, Volume 52, December 2013, Pages 774–784
[17] L. Juan, C. Zhenshan, Hot forging process design and parameters determination of magnesium alloy AZ31B spur bevel gear, Journal of Materials Processing Technology, Volume 209, Issues 18–19, 19 September 2009, Pages 5871–5880
[18] J. Hongchao , L. Jinping , W. Baoyu , Z. Zhengrong, Z. Tao, H. Zhenghuan , Numerical analysis and experiment on cross wedge rolling and forging for engine valves, Journal of Materials Processing Technology, Volume 221, July 2015, Pages 233–242
[19] M.Duarte, H. Martins, Inner Joint Forming and Pullout Simulation Using Finite Element
Analysis, SAE Technical Paper, 2004-01-3422
[20] W.L. Chan, M.W. Fu, J. Lu, Experimental and simulation study of deformation behavior
in micro-compound extrusion process, Materials & Design, Volume 32, Issue 2, February
2011, Pages 525–534
[21] L. Lavtar , T. Muhič, G. Kugler, M. Terčelj, Analysis of the main types of damage on a pair of industrial dies for hot forging car steering mechanisms, Engineering Failure Analysis, Volume 18, Issue 4, June 2011, Pages 1143–1152
[22] M.C. Lee, S.H. Chung, S.M. Jang, M.S. Joun, Three-dimensional simulation of forging using tetrahedral and hexahedral elements, Finite Elements in Analysis and Design, Volume 45, Issue 11, September 2009, Pages 745–754
指導教授 傅尹坤(Yiin-Kuen Fuh) 審核日期 2016-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明