博碩士論文 102323102 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.15.151.214
姓名 黃彥倫(Yan-Luen-Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 多重微流體晶片機械應力刺激細胞培養之研究
(Multiple microfluidic chips mechanical stress stimulation of cell culture)
相關論文
★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究
★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)★ 複合式物理力的生物反應器自動化與控制設計
★ 外部致動之微流體機電控制平台★ 以微铣削進行高分子微流體裝置之製程整合
★ 奈米矽質譜晶片於質譜檢測之應用研究★ 矽奈米結構對於質譜離子化效率探討之研究
★ 微滾軋製程應用於高分子材料轉印微結構之研究★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究
★ 利用熱壓製造類多孔隙介質之 微流道模型研究★ 單晶矽材料電化學放電鑽孔及同軸電度之研究
★ 微流道中液滴成形及滴落現象之模擬分析★ 兆聲波輔助化學溶液清潔晶圓表面汙染顆粒研究
★ 真空加熱矽奈米結構晶片對於提升質譜檢測靈敏度與離子化機制探討與應用★ 應用磁性粒子於微流體裝置之可逆接合
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 癌症目前在全世界死亡之首,其特徵癌細胞不受控制的繁殖,藉著血液、淋巴系統的循環,散播到身體其他部位,形成癌症的轉移。目前治療方法有腫瘤切除術、化學治療及放射性治療等治療方式,近年來研究發現機械力刺激細胞會影響細胞的生長因子,希望以機械力刺激癌細胞可以找到治療的機制,而微流體晶片進行生物檢測或分析具有降低人工操作的實驗誤差、自動化控制系統穩定性、降低耗能及樣品用量、時間等優點。
本研究以微流體晶片作為進行剪應力、正向應力刺激癌細胞的裝置,此裝置以設計出多項不同剪應力、正向應力刺激癌細胞,結構可將其區分成上氣閥層與下層流道層的剪、正向應力實驗晶片,氣閥層以負光阻製作出高深寬比的微結構,流道層以正光組製作出圓角的微結構,圓角有利於閥門元件能夠緊密關閉流道,利用螢光染液證實閥門的緊密度,先將癌細胞種植於下層的微流道內部腔體進行多重應力刺激系統的整合在微流體晶片上。再利用Lab view程式進行自動化控制氣閥門,及正向力氣室配合不同的時間和壓力進行刺激。
摘要(英) Cancer is currently the world′s leading cause of death, in recent years, research shows that mechanical stress are also found to have some effects to the cells . The side effects by chemo or radiation therapy may be reduced by the physical treatment assistance. We using microfluidic chip to physically and chemically stimulate cancer cells to study the mechanical stress effects to the cancer cells. Microfluidic chip for bio-detection or analysis has the advantages of reducing the manual error, automatic control system stability, reducing energy consumption and sample consumption, time, etc.

In this study, microfluidic chips were used as a device for shear stress and positive stress stimulation of cancer cells. The device to design a number of different shear stress, positive stress to stimulate cancer cells. The structure can be divided into the upper valve layer and the lower layer of the flow channel shear, positive stress test chip. The valve layer to negative light resistance to make a high aspect ratio of the microstructure. The flow path layer is made of round corners by the positive light group. So cancer cells are implanted in the lower chamber of the microchannel cavity for the integration of multiple stress stimuli on microfluidic chips, and then use the Lab view program to automatically control the gas valve, and the positive force chamber with different time and pressure to stimulate.
關鍵字(中) ★ 癌細胞
★ 機械應力刺激
★ 微流體
關鍵字(英) ★ cancer cell
★ Mechanical stress
★ Microfluidics
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 3
1.3論文架構 4
第二章 文獻回顧 5
2.1微流體文獻 5
2.2機械應力刺激細胞文獻 8
2.3利用微流體晶片機械應力刺激細胞文獻 10
第三章 實驗原理與實驗步驟 13
3.1實驗材料與藥品 14
3.2 實驗器材 15
3.3 微流道晶片製程 17
3.3.1製作光罩 17
3.3.2黃光製程 18
3.3.3 PDMS翻轉印模製程 21
3.3.4氧電漿接合 22
3.4 Lab VIEW程式設計 23
3.4.1人機介面(GUI) 24
3.5實驗系統架設 25
3.5.1微流體晶片 26
3.5.2程式控制系統 27
3.5.3環境控制系統 28
3.5.4光學觀測系統 28
3.6細胞植入晶片實驗流程 29
3.6.1實驗前置作業 29
3.6.2細胞植入晶片 30
3.6.3機械刺激細胞 32
3.6.4染色步驟 34
3.6.5細胞計數與影像分析 35
第四章 結果與討論 36
4.1晶片設計 36
4.2剪應力與正向應力刺激流程 39
4.2.1剪應力與正向應力實驗設定 42
4.3微流體晶片種植細胞 42
4.4鼠結腸癌細胞受到機械應力刺激後之結果 46
4.4.1 剪應力刺激鼠結腸癌細胞的影響 48
4.4.2 正向應力刺激鼠結腸癌細胞的影響 54
第五章 結論與未來展望 56
5.1結論 56
5.2未來展望 57
參考文獻 58
參考文獻 [1]WHO," World Cancer Report 2014",2014.
[2]行政院衛生署國民健康局,"老人健康促進計畫",2016.
[3]NCI," What Is Cancer?", February 9, 2015.
[4] X. Bao, C. B. Clark, and J. A. Frangos, , 2000.
"Temporal gradient in shear-induced signaling pathway: involvement of MAP kinase, c-fos, and connexin43", vol. 278, 2000.
[5] Khare, PD, Shao-Xi , L., Kuroki , M., Hirose , Y. ,"Gene therapy for HER-2/neu-overexpressing bladder cancer via anti-erbB2 scFv antibody-modified retrovirus carrying E1A gene," 2004.: p.1-40.
[6] Manz, A., Graber, N., Widmer, H. M., Sens. Actuators B 1990, B1, 244.
[7] Manz, A., Fettinger, J. C., Verpoorte, E., Ludi, H., Wider, H. M.,
Harrison, D. J., Anal.Chem.1991, 10, 144.
[8] Dolnik, V., Liu, S., Jovanovich, S., Electrophoresis 2000, 21, 41.
[9] Fan, Z., Harrison, D. J., Anal.Chem.1994, 66, 177.
[10]Bustillo, J.M,R.T Howe, and R.S Muller, Surface micromachining for microelectromechanical systems. Proceeding of the Ieee, 1998.86(8):p.
1552-1574.
[11]癌症基金會,2015."癌症資訊http://www.cancer-fund.org/tc/cancer.html".
[12] Harrison, D. J., Manz, A., Fan, Z., Ludi, H., Wider, H. M.,Anal.Chem.1992, 64, 1926.
[13] Unger, M.A., et al., 2000."Monolithic microfabricated valves and pumps by
multilayer soft lithography. Science, " 288(5463): p. 113-116.
[14] Park, J.M., et al., 2008."A piezoelectric microvalve for cryogenic applications.
Journal of Micromechanics and Microengineering, "18(1).
[15] Arakawa, T.,et al., 2007. " Rapid multi-reagents exchange TIRFM microfluidic system for single biomolecular imaging. Sensors and Actuators B-Chemical,"128(1): p. 218-225.
[16]Park, W., S. Han, and S. Kwon, 2010."Fabrication of membrane-type microvalves in rectangular microfluidic channels via seal photopolymerization. Lab on a Chip, "10(20): p. 2814-2817.
[17]Zeng, Y., Y. H. Qiao, Y . Zhang, X. H. Liu, Y . Wang, J. L. Hu. 2005. Effects of fluid shear stress on apoptosis of cultured human umbilical vein endothelial cells induced by LPS. Cell Biology International 29: 932-935.
[18]Punchard, M.A., C. Stenson-Cox, E. D. O’Cearbhaill, E. Lyons, S. Gundy, L. Murphy, A. Pandit, P. E. McHugh, V. Barron. 2007. Endothelial cell response to biomechanical forces under simulated vascular loading conditions. Journal of Biomechanics 40: 3146–3154.
[19] Aydemir, A. B., H. Minematsu, T. R. Gardner, K. O. Kim, J. M. Ahn, F. Y. Lee. 2010. Nuclear factor of activated T cells mediates fluid shear stress-and tensile strain-induced Cox2 in human and murine bone cells. Bone 46: 167–175.
[20] Ning Hu,Xiaoling Zhang,Jun Yang,Sang W. Joo.
2013."A cell electrofusion microfluidic chip with micro-cavity microelectrode array." 15: 151.
[21]MartinRaasch, T.,et al.,2015."Microfluidically supported biochip design for culture of endothelial cell layers with improved perfusion conditions"015013.
[22]葉力強, 2014."微流體系統應用於機械力刺激人體膀胱癌細胞之研究"
[23] Gao, X., et al.,2011. "A simple elastic membrane-based micro?uidic chip for the proliferation and differentiation of mesenchymal stem cells under tensile stress"32(23): p. 3431-6.
[24]Zhou, J. and L.E. Niklason , 2012. "Microfluidic artificial "vessels" for dynamic mechanical stimulation of mesenchymal stem cells. " Integr Biol (Camb),4(12): p. 1487-97.
指導教授 曹嘉文(Chia-Wen-Tsao) 審核日期 2017-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明