博碩士論文 102323601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.210.28.227
姓名 安普納(PURNA ANUGRAHA SUARSANA)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 ANALYSIS OF FAST PYROLYSIS PHENOMENA IN FLUIDIZED BED REACTOR OF PALM KERNEL SHELL (PKS) BIOMASS
(ANALYSIS OF FAST PYROLYSIS PHENOMENA IN FLUIDIZED BED REACTOR OF PALM KERNEL SHELL (PKS) BIOMASS)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究為快速熱解棕櫚殼製成的生質燃料,並藉由改變通入氣體的溫度、速度,以及生質燃料的質傳速率,討論快速熱解所生成的結果,而研究的分析方法採用尤拉近似法。參數設定:氣體溫度分別為723, 743, 763 K,速度為0.059, 0.088, 0.117 m/s;生質燃料質傳速率則為2.42, 3.63, 4.84 g/s。
藉由CFD模擬結果討論通入氣體的溫度與速度及質量流率對於快速裂解的產物影響分析。當增加通入氣體的溫度時,焦油所占之質量比例會上升,而碳灰及氣體之質量比例則減少;在氣體溫度為763 K時,焦油的質量比為49.26 %,碳灰與氣體分別為27.78 %及22.96 %。隨著通入氣體速度提升,焦油質量比例上升,而碳灰及氣體之質量比減少;當速度大於0.088 m/s時,所得到的結果則相反,其中在速度為0.088 m/s時,焦油、碳灰與氣體的質量比分別為50.09 %、27.06 %與22.86 %。當生質燃料質傳速率提升,焦油的質量比例增加,而碳灰與氣體則減少,當質傳速率為4.84 g/s時,焦油、碳灰與氣體的質量比例分別為50.36 %、26.89 % 與22.77 %。
摘要(英) The fast pyrolysis phenomena in fluidized bed reactor of Palm Kernel Shell such as the effect of temperature fluidization gas, velocity fluidization gas and mass flow rate of biomass on product yield of fast pyrolysis PKS biomass were investigated based on the Euler-Euler approach in this work. The temperature of fluidization is varied of 723, 743 and 763K. The velocity of fluidization gas is varied of 0.059, 0.088 and 0.117 m/s. The mass flow rate is varied of 2.42, 3.63 and 4.84 g/s.
Result of CFD simulation studies is: the temperature of fluidization gas, velocity of fluidization gas and mass flow rate of biomass is effect on product yield of fast pyrolysis PKS Biomass. The increasing temperature of fluidization gas is lead to increasing of mass fraction tar and decreasing of mass fraction char and gas. At temperature 763K, the mass fraction of tar is 49.26%, mass fraction of char and gas are 27.78% and 22.96%. The increasing velocity of fluidization gas is lead to increasing tar and decreasing mass fraction of char and gas until velocity of 0.088m/s, after that the trend of product yield fast pyrolysis is vice versa. At velocity 0.088m/s, the mass fraction of tar, char and gas are 50.09%, 27.06% and 22.86%. The increasing mass flow rate of biomass is lead to increasing the mass fraction of tar and decreasing mass fraction of char and gas. At the mass flow rate 4.84 g/s, the mass fraction of tar, char and gas are 50.36%, 26.89% and 22.77%.
Keywords: Fast pyrolysis, PKS biomass, fluidized bed, product yield
關鍵字(中) ★ 生質油
★ 生質能 棕梠殼
關鍵字(英) ★ Fast pyrolysis
★ PKS biomass
論文目次 中文摘要 ..................................................................................................................................... i
Abstract ....................................................................................................................................... ii
Acknowledgements ................................................................................................................... iii
Contents ..................................................................................................................................... iv
List of Figures ............................................................................................................................ vi
List of Tables .............................................................................................................................. x
Chapter 1 Introduction ................................................................................................................ 1
1.1 Background ....................................................................................................................... 1
1.2 Literature Review ............................................................................................................. 2
1.3 Motivation ........................................................................................................................ 8
Chapter 2 Model and Methodology .......................................................................................... 10
2.1 Model of CFD for Fast Pyrolysis ................................................................................. 10
2.1.1 Time Schemes in Multiphase Flow ......................................................................... 11
2.1.2 Volume Fraction Equation....................................................................................... 12
2.1.3 General Conservation Equations ............................................................................. 12
2.1.4 Conservation Equations Solved by ANSYS-FLUENT ........................................... 15
2.1.5 Reaction Kinetic ...................................................................................................... 17
2.1.5.1 Example Calculation of Activation Energy and Pre-Exponential Factor ......... 20
2.1.5.2 Example Calculation of Yield Coefficients of Different Products Pyrolysis ... 22
2.1.5.3 Heterogeneous Phase Interaction .................................................................... 23
v
2.1.6 Pressures-Velocity Coupling ................................................................................... 23
2.2 Methodology ................................................................................................................... 25
2.2.1 Fluidized Bed Design .............................................................................................. 25
2.2.2 Procedure ................................................................................................................. 27
2.2.3 Validation ................................................................................................................ 29
2.2.4 Assumptions ............................................................................................................ 33
2.2.5 Grid Independent Test ............................................................................................. 34
Chapter 3 Result and Discussion .............................................................................................. 37
3.1 The effect of Temperature Fluidization Gas on Yield Product of Fast Pyrolysis .......... 37
3.2 The Effect of Velocity Fluidization Gas on Product Yield of Fast Pyrolysis ................ 49
3.3 The Effect of Mass Flow Rate PKS Biomass on Product Yield of Fast Pyrolysis......... 60
Chapter 4 Conclusions and Suggestion .................................................................................... 69
4.1 Conclusions .................................................................................................................... 69
4.2 Suggestion ...................................................................................................................... 70
References ................................................................................................................................ 71
參考文獻 1. “The End of Fossil Fuels”, https://www.ecotricity.co.uk/our-green-energy/energy-independence/the-end-of-fossil-fuels.
2. Mustafa Balat, Mehmet Balat, Elif Kırtay, Havva Balat, “Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems”, Energy Conversion and Management, Vol. 50, pp. 3147–3157 (2009).
3. K. Papadikis, A.V. Bridgwatera, S. Gub, “CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors, PartA: Eulerian computation of momentum transport in bubbling fluidised beds”, Chemical Engineering Science, Vol. 63, pp. 4218- 4227 (2008).
4. K. Papadikis, A.V. Bridgwatera, S. Gub, “CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors .Part B Heat , momentum and mass transport in bubbling fluidised beds”, Chemical Engineering Science, Vol. 64, pp. 1036-1045 (2009).
5. K. Papadikis, S. Gub, A.V. Bridgwater, H. Gerhauser, “Application of CFD to model fast pyrolysis of biomass”, Fuel Processing Technology, Vol. 90, pp. 504–512 (2009).
6. Q. Xue, T.J.Heindel, R.O.Fox, “A CFD model for biomass fast pyrolysis in fluidized-bed reactors”, Chemical Engineering Science, Vol. 66, pp. 2440–2452 (2011).
7. Pelle Mellin, Qinglin Zhang, Efthymios Kantarelis, Weihong Yang, “An Euler-Euler approach to modeling biomass fast pyrolysis in fluidized-bed reactors- Focusing on the gas phase”, Applied Thermal Engineering, Vol. 58, pp. 344-353 (2013).
8. A.A. Boateng, P.L. Mtui, “CFD modeling of space-time evolution of fast pyrolysis products in a bench-scale fluidized-bed reactor”, Applied Thermal Engineering, Vol. 33-34, pp. 190-198 (2012).
9. K. Papadikis, H. Gerhauser, A.V. Bridgwater, S. Gu, “CFD modelling of the fast pyrolysis of an in-flight cellulosic particle subjected to convective heat transfer”, Biomass and Bioenergy, Vol. 33, pp. 97 – 107 (2009).
72
10. Q. Xue, D. Dalluge, T.J. Heindel, R.O. Fox, R.C. Brown, “Experimental validation and CFD modeling study of biomass fast pyrolysis in fluidized-bed reactors”, Fuel, Vol. 97, pp. 757–769 (2012).
11. Pelle Mellin, Efthymios Kantarelis, Weihong Yang, “Computational fluid dynamics modeling of biomass fast pyrolysis in a fluidized bed reactor, using a comprehensive chemistry scheme”, Fuel, Vol. 117, pp. 704–715 (2014).
12. Y. Haseli, J.A. van Oijen, L.P.H. de Goey, “Modeling biomass particle pyrolysis with temperature-dependent heat of reactions”, Journal of Analytical and Applied Pyrolysis, Vol. 90, pp. 140–154 (2011).
13. Shaozeng Sun, Hongming Tian, Yijun Zhao, Rui Sun, Hao Zhou, “Experimental and numerical study of biomass flash pyrolysis in an entrained flow reactor”, Bioresource Technology, Vol. 101, pp. 3678–3684 (2010).
14. ANSYS FLUENT Theory Guide; ANSYS, Inc., 2011.
15. Colomba Di Blasi, “Modeling and Simulation of Combustion Processes of Charring and Non-Charring Solid Fuels”, Prog. Energy Combust. Sci, Vol. 19, pp. 71-104 (1993).
16. Lukáš Gašparovič, Zuzana Koreňová, Ľudovít Jelemenský, “Kinetic study of wood chips decomposition by TGA”, 36th International Conference of SSCHE, pp. 178 (2009).
17. H.K. Versteeg W.Malalasekera, “Computational Fluid Dynamics, The Finite Volume Method”, Longman Group Ltd, 1995.
18. Seon-Jin Kim, Su-Hwa Jung, Joo-Sik Kim, “Fast pyrolysis of palm kernel shells: Influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds”, Bioresource Technology, Vol. 101, pp. 9294–9300 (2010).
19. Qingang Xiong, Song-Charng Kong, Alberto Passalacqua, “Development of a generalized numerical framework for simulating biomass fast pyrolysis in fluidized-bed reactors”, Chemical Engineering Science, Vol. 99, pp. 305–313 (2013).
73
20. Yao Wei, Wang Jian, Liao Guangxuan, “Grid-independent Issue in Numerical Heat Transfer”.
21. Mohammad Asadullah, Nurul Suhada Ab Rasid, Sharifah Aishah Syed A. Kadir, Amin Azdarpour, “Production and detailed characterization of bio-oil from fast pyrolysis of palm kernel shell”, Biomass and Bioenergy, Vol. 59, pp. 316-324 (2013).
22. S.I. Yang, M.S. Wu, C.Y. Wu, “Application of biomass fast pyrolysis part I: Pyrolysis characteristics and products”, Energy, Vol. 30, pp. 1-10 (2013).
23. Stepen R.Turn, “An Introduction to Combustion: Consept and Application”, McGraw-Hill, 2000.
24. Clement Kleinstreuer, “Two-Phase Flow: Theory and Applications”, Taylor & Francis, 2003.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2014-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明