博碩士論文 102323605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.237.66.86
姓名 阮帆泰(Nguyen Van Tai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱
(Cr-Electrodepostion influenced by cations and anions added in the Cr(III)-containing bath)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究中,探討鍍浴對電化學沉積碳化鉻鍍層之影響。在三價鉻的鍍浴中,添加不同的陽離子(Na+, Mg2+ and Al3+)以及陰離子(NO3-, Cl-, SO42- and PO43-) 提升離子強度,由7.00增加至10.75,進而探討添加之陰、陽離子對鍍層的影響。在鈉離子、鎂離子及鋁離子添加在鍍浴後,電鍍後的鍍層之表面形貌變為更平滑緻密,特別是添加0.19 M~0.94 M之Mg2+離子,使鍍浴之離子強度由7.75提升至10.75。而陰離子添加在鍍浴中,我們發現含有硫酸根離子(SO42-)之鍍液電鍍出之鍍層,相較於添加其他陰離子(NO3-,Cl-及PO43-)有更佳的形貌。X光結晶繞射分析,所有的鍍層屬於非晶結構,藉由X光光電子能譜儀分析,不同鍍浴所電鍍之鍍層中,分別含有三種不同的化學組成鍍層,如金屬態之鉻、碳化鉻及三價的氧化鉻。鍍浴中鈉離子及鎂離子濃度的增加將提升電流效率,但添加鋁離子則會導致下降。直流的陰極極化曲線以及電化學交流阻抗分析之結果,可提供全面性的詮釋電鍍時陰、陽離子添加所產生之現象。添加Na+、Mg2+及Al3+的鍍液,將有效抑制氫還原的電流密度,然而亦更進一步增加三價鉻錯合物的生成。基於上述之分析結果,添加陽離子至鍍浴中將避免氫氣氣泡在鍍層表面的形成孔洞。在固定的離子強度為10.75下,鉻還原的極化阻抗依序增加:0.044 (SNa_5) < 0.065 (SMg_5) < 0.123 (Sf) < 0.130 (SAl_5)。因此,在鍍浴中添加1.25 M Na+ 及 0.94 M Mg2+將促使鉻還原的速率增加,但添加0.25 M Al3+將使其下降。電化學交流阻抗結果證實此推測正確,鉻還原之電荷轉移阻抗(Ω)將下列順序增加:0.759 (SNa_5) < 0.977 (SMg_5) < 1.107 (Sf) < 1.255 (SAl_5),而反應物種之擴散係數(m2s-1)將隨下列順序減少:9.443 x 10-12 (SNa_5) > 5.219 x 10-12 (SMg_5) > 4.766x10-12 (Sf) > 2.687x10-12 (SAl_5)。在本論文亦提出三價鉻電鍍之示意圖以利瞭解鍍浴對電鍍之影響。添加1.25 M之硫酸鈉或0.94 M之硫酸鎂將使得三價鉻之鍍層有更緻密及平滑之效果,亦得到鍍層最高之硬度(~ 950 Hv),以及在3.5 wt. % 氯化鈉溶液中有最佳的腐蝕抑制效果。
關鍵字:陰離子,陽離子,電沉積,三價鉻,腐蝕特性,電化學交流阻抗
摘要(英) Bath effect on the electrochemical deposition of Cr-C was investigated in this work. Different cations (i.e., Na+, Mg2+ and Al3+) and anions (i.e., NO3-, Cl-, SO42- and PO43-) were added in the Cr (III)-containing bath resulting in ionic strength increase from 7.00 to 10.75 to explore their effect on the deposits. The surface morphology of the deposits was found to become smooth and dense in the baths where Na+, Mg2+ and Al3+ cations were added, especially in the baths containing 0.19 - 0.94 M Mg2+ in response to the ionic strength from 7.75 to 10.75. With respect to anion effect, we found that better appearance was the deposits come from baths containing SO42- rather than other anions like NO3-, Cl- and PO43-. Analysis with x-ray diffractometer (XRD), all the deposits belong to amorphous structure. Examination by X-ray photoelectron spectrometer (XPS), the deposits revealed a composition of metallic Cr, Cr-C, and Cr(III) oxides in different amounts depending the baths chosen. The current efficiency increased with increasing the concentration of Na+ and Mg2+ but decreased with the concentration of Al3+ in the bath. The results of direct current cathodic polarization and alternating current electrochemical impedance spectroscopy (EIS) provided comprehensive interpretation for this effect. In the bath with added Na+, Mg2+ and Al3+, the current density for hydrogen reduction was pertinently depressed; however, the reduction of Cr(III)-complex and its further reduction were enhanced. Due to this fact, the deposit come from the baths added with cations inhibited the formation of hydrogen bubbles and thus avoiding the formation of pores. Under a constant ionic strength of 10.75, the polarization resistance (Rp, in Ω) of Cr-reduction increased in the order: 0.044 (SNa_5) < 0.065 (SMg_5) < 0.123 (Sf) < 0.130 (SAl_5). As a result, Cr-reduction rate increased in the bath added with 1.25 M Na+ and 0.94 M Mg2+ but decreased with that added with 0.25 M Al3+. EIS data confirmed this inference, the charge transfer resistance (Rct in Ω) for Cr-reduction increased in the order: 0.759 (SNa_5) < 0.977 (SMg_5) < 1.107 (Sf) < 1.255 (SAl_5) and the diffusion coefficient (in m2s-1) of the reactive species decreased in the order: 9.443 x 10-12 (SNa_5) > 5.219 x 10-12 (SMg_5) > 4.766x10-12 (Sf) > 2.687x10-12 (SAl_5). A schematic diagram is proposed for understanding the bath effect on the Cr(III)-electroplating. Addition of 1.25 M sodium sulfate (SNa_5) or 0.94 M magnesium sulfate (SMg_5) to the Cr(III)-containing bath led to smooth and dense deposit which revealing the highest mechanical hardness (i.e., 950 Hv) and best corrosion resistance to 3.5 wt. % NaCl solution.
關鍵字(中) ★ 陰離子
★ 陽離子
★ 電沉積
★ 三價鉻
★ 腐蝕特性
★ 電化學交流阻抗
關鍵字(英) ★ Cations
★ Anions
★ Electrodepsition
★ Trivalent chromium
★ Corrosion behavior
★ EIS
論文目次 Abstract i
摘要 iii
Acknowledgements iv
Contents v
List of Tables viii
List of Figures xii
Chapter 1. INTRODUCTION 1
1.1. Development of chromium electrodeposition 1
1.2 Challenges of trivalent chromium electrodeposition 2
1.3 Motivation and golds 2
Chapter 2. THEORETICAL BACKGROUND OF Cr(III) ELETRODEPOSITION 5
2.1. Theory of chromium electrodeposition 5
2.1.1. Aquation 6
2.1.2. Hydrolysis 7
2.1.3. Olation 7
2.1.4. Polymerization 8
2.1.5. Oxolation 9
2.1.6. Anion penetration 9
2.1.7. The formation of cathodic film 9
2.2. The effect of composition bath on trivalent chromium electrodeposition process 11
2.3 The effect of bath conditions on electroplating process. 12
2.4. Hull cell test 13
2.5. Scanning electron microscope 13
2.6. X-ray photoelectron spectroscopy 16
2.6.1 Principles of XPS analysis 17
2.6.2 XPS spectra 17
2.6.3 Instrumentation 17
2.7. X-ray diffraction (XRD) 19
2.7.1 Theoretical consideration 19
2.7.2. Goniometer 20
2.7.3. Diffractometer slit system 21
2.7.4. Application 21
Chapter 3. EXPERIMENTAL DETAILS 23
3.1 Materials 23
3.1.1 Chemicals 23
3.1.2 Apparatus: 23
3.1.3 Instrument 24
3.2 Experimental methods 25
3.3 Preparation for electrochemical deposition 26
Chapter 4. RESULTS 28
4.1. Effect of cations and ionic strength on bright coating and range of current density 28
4.2 Effect of cations and anions on surface morphology of coatings 29
4.3. The structure of coatings 31
4.4 Effect of cations on current efficiency 32
4.4.1 Effect of cations on current efficiency in variation of ionic strength 32
4.4.2. Effect of current density on current efficiency 33
4.4.3. The effect of deposition time on current efficiency 34
4.5. Chemical states of Cr-C coating 35
4.5.1 Cr2p band 35
4.5.2 O1s band 36
4.5.3 C1s band 36
4.5.4 Al2p band 36
4.6. Effect of cations on hardness measurements 37
4.7. Effect of cations and ionic strength on corrosion behavior 37
4.7.1. Open circuit potential measurements 37
4.7.2. Potentiodynamic polarization for corrosion measurements 37
Chapter 5. DISCUSSION 40
5.1. Effect of cations, anions and ionic strength on surface morphology of coatings 40
5.2. Effect of cations on current efficiency 42
5.3. Effect of cations on hardness measurement 46
5.4. Effect of cations and ionic strength on corrosion behavior 46
Chapter 6. CONCLUSIONS 48
Reference 50
參考文獻 [1] N. V. Mandich and D. L. Snyder, "Electrodeposition of chromium," Modern Electroplating, pp. 205-248, 2010.
[2] E. Svenson, "DuraChrome Hard Chromium Plating," Plating Resources, Inc. Cocoa, Florida, USA 1980, 2006, vol. 2, pp. e634-e634, 2006.
[3] A. Cˇešuniene, "Transactions of the Institute of Metal Finishing," Transactions of the Institute of Metal Finishing, vol. 91, p. 342, 2013.
[4] Z. Zeng, Y. Sun, and J. Zhang, "The electrochemical reduction mechanism of trivalent chromium in the presence of formic acid," Electrochemistry Communications, vol. 11, pp. 331-334, 2009.
[5] L. Prosper, "Waste Electrical and Electronic Equipment (WEEE)," 2008.
[6] R. Directive, "Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment," Official Journal of the European Union, vol. 13, p. L37, 2003.
[7] C. Chien, C. Liu, F. Chen, K. Lin, and C. Lin, "Microstructure and properties of carbon–sulfur-containing chromium deposits electroplated in trivalent chromium baths with thiosalicylic acid," Electrochimica Acta, vol. 72, pp. 74-80, 2012.
[8] R. Giovanardi and G. Orlando, "Chromium electrodeposition from Cr (III) aqueous solutions," Surface and Coatings Technology, vol. 205, pp. 3947-3955, 2011.
[9] B. Li, A. Lin, and F. Gan, "Preparation and characterization of Cr–P coatings by electrodeposition from trivalent chromium electrolytes using malonic acid as complex," Surface and Coatings Technology, vol. 201, pp. 2578-2586, 2006.
[10] Y. Song and D.-T. Chin, "Current efficiency and polarization behavior of trivalent chromium electrodeposition process," Electrochimica Acta, vol. 48, pp. 349-356, 2002.
[11] H. Ramezani-Varzaneh, S. Allahkaram, and M. Isakhani-Zakaria, "Effects of phosphorus content on corrosion behavior of trivalent chromium coatings in 3.5 wt.% NaCl solution," Surface and Coatings Technology, vol. 244, pp. 158-165, 2014.
[12] F. Danilov and A. Velichenko, "Electrocatalytic activity of anodes in reference to Cr (III) oxidation reaction," Electrochimica acta, vol. 38, pp. 437-440, 1993.
[13] S. Survilienė, O. Nivinskienė, A. Češunienė, and A. Selskis, "Effect of Cr (III) solution chemistry on electrodeposition of chromium," Journal of applied electrochemistry, vol. 36, pp. 649-654, 2006.
[14] N. Van Phuong, S.-C. Kwon, J.-Y. Lee, J. Shin, B. T. Huy, and Y.-I. Lee, "Mechanistic study on the effect of PEG molecules in a trivalent chromium electrodeposition process," Microchemical Journal, vol. 99, pp. 7-14, 2011.
[15] X.-j. Hu, Y.-g. Liu, G.-m. Zeng, S.-h. You, H. Wang, X. Hu, et al., "Effects of background electrolytes and ionic strength on enrichment of Cd (II) ions with magnetic graphene oxide–supported sulfanilic acid," Journal of colloid and interface science, vol. 435, pp. 138-144, 2014.
[16] T. Wang, W. Liu, L. Xiong, N. Xu, and J. Ni, "Influence of pH, ionic strength and humic acid on competitive adsorption of Pb (II), Cd (II) and Cr (III) onto titanate nanotubes," Chemical Engineering Journal, vol. 215, pp. 366-374, 2013.
[17] J.-K. Yang and A. P. Davis, "Competitive adsorption of Cu (II)–EDTA and Cd (II)–EDTA onto TiO 2," Journal of colloid and interface science, vol. 216, pp. 77-85, 1999.
[18] J.-K. Yang, S.-M. Lee, and A. P. Davis, "Effect of background electrolytes and pH on the adsorption of Cu (II)/EDTA onto TiO 2," Journal of colloid and interface science, vol. 295, pp. 14-20, 2006.
[19] N. Mandich, "Chemistry and theory of chromium deposition. Part I: Chemistry," Plat. Surf. Finish, vol. 84, pp. 108-116, 1997.
[20] E. S. Ferreira, C. Pereira, and A. Silva, "Electrochemical studies of metallic chromium electrodeposition from a Cr (III) bath," Journal of Electroanalytical Chemistry, vol. 707, pp. 52-58, 2013.
[21] V. Korshunov, V. Safonov, and L. Vykhodtseva, "Structural features of the electrode/solution interface at the reduction of Cr3+ (aq) cations on liquid mercury and solid indium electrodes in acidic media," Russian Journal of Electrochemistry, vol. 44, pp. 255-264, 2008.
[22] Z. Zeng, Y. Zhang, W. Zhao, and J. Zhang, "Role of complexing ligands in trivalent chromium electrodeposition," Surface and Coatings Technology, vol. 205, pp. 4771-4775, 2011.
[23] V. Protsenko, F. Danilov, V. Gordiienko, S. Kwon, M. Kim, and J. Lee, "Electrodeposition of hard nanocrystalline chrome from aqueous sulfate trivalent chromium bath," Thin Solid Films, vol. 520, pp. 380-383, 2011.
[24] V. S. Protsenko, V. O. Gordiienko, and F. I. Danilov, "Unusual" chemical" mechanism of carbon co-deposition in Cr-C alloy electrodeposition process from trivalent chromium bath," Electrochemistry Communications, vol. 17, pp. 85-87, 2012.
[25] F. G. Lima, U. Mescheder, and H. Reinecke, "Simulation of Current Density for Electroplating on Silicon Using a Hull Cell," solar cells, vol. 6, p. 7, 2012.
[26] C.-A. Vu, "Surface Modification by Electrodeposition of ZnO Nanorods as Electrochemical DNA Biosensors," 2014.
[27] J. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig Jr, C. E. Lyman, et al., Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists: Springer Science & Business Media, 2012.
[28] S. Hofmann, Auger-and X-ray photoelectron spectroscopy in materials science: a user-oriented guide vol. 49: Springer Science & Business Media, 2012.
[29] W. E. Swartz Jr, "X-ray photoelectron spectroscopy," Analytical Chemistry, vol. 45, pp. 788A-800a, 1973.
[30] J.-T. Li, B. Hoekstra, Z.-B. Wang, and Y.-K. Pu, "The initial oxidation of poly-crystalline aluminum studied with x-ray photoelectron spectroscopy," Journal of Physics D: Applied Physics, vol. 47, p. 105301, 2014.
[31] M. Birkholz, "Principles of X‐ray Diffraction," Thin Film Analysis by X-Ray Scattering, pp. 1-40, 2006.
[32] B. B. He, "Method and apparatus for using an area X-ray detector as a point detector in an X-ray diffractometer," ed: Google Patents, 2013.
[33] L. Sziráki, E. Kuzmann, K. Papp, C. U. Chisholm, M. R. El-Sharif, and K. Havancsák, "Electrochemical behaviour of amorphous electrodeposited chromium coatings," Materials Chemistry and Physics, vol. 133, pp. 1092-1100, 2012.
[34] S. Survilienė, A. Češūnienė, V. Jasulaitienė, and I. Jurevičiūtė, "The use of XPS for study of the surface layers of CrNi alloys electrodeposited from the Cr (III)+ Ni (II) bath," Applied Surface Science, vol. 258, pp. 9902-9906, 2012.
[35] N. Van Phuong, S. C. Kwon, J. Y. Lee, J. H. Lee, and K. H. Lee, "The effects of pH and polyethylene glycol on the Cr (III) solution chemistry and electrodeposition of chromium," Surface and Coatings Technology, vol. 206, pp. 4349-4355, 2012.
[36] X. He, B. Hou, C. Li, Q. Zhu, Y. Jiang, and L. Wu, "Electrochemical mechanism of trivalent chromium reduction in 1-butyl-3-methylimidazolium bromide ionic liquid," Electrochimica Acta, vol. 130, pp. 245-252, 2014.
[37] S. Ghaziof, M. Golozar, and K. Raeissi, "Characterization of as-deposited and annealed Cr–C alloy coatings produced from a trivalent chromium bath," Journal of Alloys and Compounds, vol. 496, pp. 164-168, 2010.
[38] C. Fontanesi, R. Giovanardi, M. Cannio, and E. Soragni, "Chromium electrodeposition from Cr (VI) low concentration solutions," Journal of Applied Electrochemistry, vol. 38, pp. 425-436, 2008.
[39] H.-H. Sheu, C.-E. Lu, K.-H. Hou, M.-L. Kuo, and M.-D. Ger, "Effects of alumina addition and heat treatment on the behavior of Cr coatings electroplated from a trivalent chromium bath," Journal of the Taiwan Institute of Chemical Engineers, vol. 48, pp. 73-80, 2015.
[40] T. Yoshida, D. Komatsu, N. Shimokawa, and H. Minoura, "Mechanism of cathodic electrodeposition of zinc oxide thin films from aqueous zinc nitrate baths," Thin solid films, vol. 451, pp. 166-169, 2004.
[41] A. A. Haleem and M. Ichimura, "Electrochemical deposition of aluminum oxide thin films from aqueous baths," Materials Letters, vol. 130, pp. 26-28, 2014.
[42] M. Gibilaro, L. Massot, P. Chamelot, and P. Taxil, "Co-reduction of aluminium and lanthanide ions in molten fluorides: Application to cerium and samarium extraction from nuclear wastes," Electrochimica Acta, vol. 54, pp. 5300-5306, 2009.
[43] H. Huang, P. Ran, and Z. Liu, "Impedance sensing of allergen–antibody interaction on glassy carbon electrode modified by gold electrodeposition," Bioelectrochemistry, vol. 70, pp. 257-262, 2007.
[44] P. Najafisayar and M. Bahrololoom, "Pulse electrodeposition of Prussian Blue thin films," Thin Solid Films, vol. 542, pp. 45-51, 2013.
[45] M. Xu, D. Ivey, W. Qu, and Z. Xie, "Study of the mechanism for electrodeposition of dendrite-free zinc in an alkaline electrolyte modified with 1-ethyl-3-methylimidazolium dicyanamide," Journal of Power Sources, vol. 274, pp. 1249-1253, 2015.
[46] Y. Li, X. Cai, and W. Shen, "Preparation and performance comparison of supercapacitors based on nanocomposites of MnO 2 with cationic surfactant of CTAC or CTAB by direct electrodeposition," Electrochimica Acta, vol. 149, pp. 306-315, 2014.
[47] A. Bolzán, "Electrodeposition of copper on glassy carbon electrodes in the presence of picolinic acid," Electrochimica Acta, vol. 113, pp. 706-718, 2013.
[48] R. Vedalakshmi, V. Saraswathy, H.-W. Song, and N. Palaniswamy, "Determination of diffusion coefficient of chloride in concrete using Warburg diffusion coefficient," Corrosion Science, vol. 51, pp. 1299-1307, 2009.
[49] A. Ehsani, M. G. Mahjani, and M. Jafarian, "Electrochemical impedance spectroscopy study on intercalation and anomalous diffusion of AlCl−," Turk J Chem, vol. 35, pp. 735-743, 2011.
[50] M. Pasquale, L. Gassa, and A. Arvia, "Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives," Electrochimica Acta, vol. 53, pp. 5891-5904, 2008.
[51] Z. Zeng, L. Wang, A. Liang, and J. Zhang, "Tribological and electrochemical behavior of thick Cr–C alloy coatings electrodeposited in trivalent chromium bath as an alternative to conventional Cr coatings," Electrochimica Acta, vol. 52, pp. 1366-1373, 2006.
[52] V. Protsenko, F. Danilov, V. Gordiienko, A. Baskevich, and V. Artemchuk, "Improving hardness and tribological characteristics of nanocrystalline Cr–C films obtained from Cr (III) plating bath using pulsed electrodeposition," International Journal of Refractory Metals and Hard Materials, vol. 31, pp. 281-283, 2012.
[53] T. Moffat and R. Latanision, "An Electrochemical and X‐Ray Photoelectron Spectroscopy Study of the Passive State of Chromium," Journal of The Electrochemical Society, vol. 139, pp. 1869-1879, 1992.
指導教授 林景崎(Jing-Chie, Lin) 審核日期 2016-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明