博碩士論文 102324006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.16.67.248
姓名 周韋邑(Wei-Yi Chou)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究
★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究★ 尖針狀鈷矽化物/矽單晶異質奈米線陣列結構之製備及其性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究分為三個部分,第一個部分是以奈米球微影術與金屬催化化學蝕刻法製備出大面積規則有序排列之矽單晶奈米線陣列,之後以側壁鍍膜法在上面鍍製鈦金屬與非晶矽,經由高溫熱退火形成金屬矽化物奈米管陣列,並探討經由不同退火溫度之生成相為何;第二個部分是以溼式蝕刻法製備出不同晶面的超薄矽晶圓,並在其上製備出矽單晶奈米線陣列;第三個部分是關於矽單晶奈米線轉附製程之研究,藉由兩步驟蝕刻法製備出底部有多孔性結構之矽單晶奈米線陣列,之後將其轉附於已經塗有Epoxy之可撓曲軟板上,施以剪切力分開底部基材與矽單晶奈米線。

藉由奈米球微影術與金屬催化化學蝕刻法製備出大面積之矽單晶奈米線陣列後,為了獲得更小尺寸之矽單晶奈米線,本研究以高溫熱氧化進一步縮小矽單晶奈米線之直徑,且經由穿透式電子顯微鏡鑑定後,尺寸被控制在40 nm左右,且經由掃描式電子顯微鏡分析,仍舊保持初始矽單晶奈米線陣列之排列,之後以側壁鍍膜法將鈦金屬與非晶矽鍍製於矽單晶奈米線之側壁,使鈦金屬與矽單晶奈米線進行高溫界面反應,非晶矽則是扮演阻擋外界氣氛之角色,本研究在此探討經由不同退火溫度之生成相與結構變化,以拉曼光譜儀與穿透式電子顯微鏡進行分析與鑑定。

本研究也以金屬催化無電鍍蝕刻法製備出不同晶面之超薄矽晶圓,藉由蝕刻溫度的改變與蝕刻液濃度的調整,探討這兩種條件對於蝕刻形貌的影響,並從其中選定最佳蝕刻條件,並將此最佳蝕刻條件也應用於製備其他晶面之超薄矽晶圓,都可以在蝕刻後得到反射率與初始拋光面一樣的反射率,表示試片不僅被成功的薄化,也在薄化的同時將表面修飾為較平坦的樣貌,本研究以掃描式電子顯微鏡進行厚度鑑定及初步的形貌的觀察,以原子力顯微鏡進行詳細的表面形貌觀察,所得之表面粗糙度都遠優於同樣以溼式蝕刻法製備超薄矽晶圓之文獻,表示本研究使用之製備法是一個相當好的技術。

最後本研究也將初始在單晶矽基材上之矽單晶奈米線轉附製可撓曲軟板上,藉由第二部蝕刻將矽單晶奈米線底部蝕刻出多孔性結構,經由穿透式電子顯微鏡很明顯的可以觀察到矽單晶奈米線底部有孔洞結構,我們推測其機制是是因第二步蝕刻使用之高濃度雙氧水蝕刻液之關係,導致此時為等向性蝕刻,而有往側壁蝕刻之現象,因此在轉附的過程可以以較小的剪切力將矽單晶奈米線與底部分開,成功的將矽單晶奈米線轉附至任意基材上。

摘要(英) There are three parts in this study. The first is fabrication of large area single-crystalline SiNWs array by nanosphere lithography and metal-assisted chemical etching, then deposited titanium and amorphous-silicon on the SiNWs array by lateral deposition, and treated it with high temperature to form metal silicide nanotubes array, and discussed the forming phases during various temperature; the second is fabrication of various orientation of ultra-thin silicon wafer by wet etching, then fabricated single-crystalline SiNWs array on ultra-thin silicon wafer; the third part is the research about transfer of single-crystalline SiNWs array. By second etching process, the bottom of SiNWs would be etched to form porous structure, then transferred to flexible plate with epoxy, used sheer force to divide SiNWs array from silicon substrate.

As the large area single-crystalline SiNWs array was fabricated by nanosphere lithography and metal-assisted chemical etching. In order to obtain thinner SiNWs, high temperature oxidation was applied to reducing the size of SiNWs, and the diameter was 40 nm by TEM observation, also the arrangement of SiNWs remained arrayed by SEM observation, then titanium and amorphous-silicon were deposited on the SiNWs by lateral deposition and treated it with high temperature annealing. The role of amorphous-silicon is to passivate ambience. Herein we discussed and analyzed the forming phases and structure during various temperature by Raman spectroscope and TEM respectively.

Also in this study we fabricated different orientation of ultra-thin silicon wafer by metal-assisted electroless etching process, and discussed the influence during various temperature and concentration of etching solution, choosen the best condition to fabricate ultra-thin silicon wafer, and the condition is also suitable for other orientation silicon wafer from transmittance. It means that the etching process not only thinned the silicon wafer successfully but also modified the surface of silicon wafer. In this study, SEM was applied to observing the thickness and surface of ultra-thin silicon wafer, AFM was applied to analyzing the surface structure detailedly, the surface roughness of different orientation ultra-thin silicon wafer is better than the reference using wet etching process. So the process applied to fabricating ultra-thin silicon wafer in this study is an excellent method.

At the last of this study, SiNWs array was transferred to flexible plate by second etching process, the bottom of SiNWs would form porous structure by TEM observation, and we guess the forming mechanism is isotropic etching during second etching process in high concentration H2O2 of etching solution, so the bottom of SiNWs would be etched latterly. As the SiNWs array was divided from silicon substrate, we can use less sheer force to transfer the SiNWs array on the flexible plate.

關鍵字(中) ★ 矽化物
★ 奈米管
★ 超薄矽晶圓
★ 濕式蝕刻
★ 轉附製程
關鍵字(英)
論文目次 摘要 I

Abstract III

致謝 V

目錄 VI

第一章 前言及文獻回顧 1

1-1 前言 1

1-2 奈米球微影術結合金屬催化化學蝕刻法製備矽單晶奈米線 3

1-2-1 奈米球微影術 4

1-2-2 金屬催化化學蝕刻法 4

1-3 金屬矽化物 5

1-3-1 金屬矽化物之製程與應用 5

1-3-2 鈦矽化物薄膜 6

1-3-3 鈦矽化物奈米管 7

1-4 超薄矽基材 8

1-4-1 超薄矽基材之製程 8

1-4-2 超薄矽基材之應用 9

1-5 轉附矽單晶奈米線於異質基材 9

1-6 研究動機及目標 11

第二章 實驗步驟及儀器設備 12

2-1 實驗步驟 12

2-1-1 矽基材使用前處理 12

2-1-2 奈米球模板製備 12

2-1-3 氧電漿蝕刻調控奈米球模板尺寸 13

2-1-4 蒸鍍金薄膜 13

2-1-5 金屬催化化學蝕刻法製備矽單晶奈米線陣列 13

2-1-6 熱氧化法調控矽單晶奈米線尺寸 14

2-1-7 準直鈦矽化物奈米管陣列之製備 14

2-1-8 以濕式蝕刻法在超薄矽基材上製備矽單晶奈米線陣列 14

2-1-9 矽單晶奈米線陣列之轉附 15

2-2 試片分析方法 15

2-2-1 掃描式電子顯微鏡 15

2-2-2 穿透式電子顯微鏡 16

2-2-3 拉曼光譜儀 16

2-2-4 紫外光-可見光光譜儀 17

2-2-5 原子力顯微鏡 17

第三章 結果與討論 18

3-1 製備奈米球模板 18

3-1-1 製備單層聚苯乙烯奈米球模板 18

3-1-2 氧電漿蝕刻調控單層聚苯乙烯奈米球模板尺寸 18

3-2 金屬催化化學蝕刻法結合熱氧化法製備矽單晶奈米線陣列 18

3-3 製備鈦矽化物奈米管陣列 20

3-3-1 拉曼光譜儀分析 22

3-3-2穿透式電子顯微鏡分析 23

3-4以濕式蝕刻法製備不同晶面之超薄矽基材並在其上製備矽單晶奈米線陣列 25

3-4-1以濕式蝕刻法製備不同晶面之超薄矽晶圓 25

3-4-2改變蝕刻液溫度與比例對製備超薄矽晶圓之影響 26

3-4-3在超薄矽晶圓上製備矽單晶奈米線陣列 29

3-5 矽單晶奈米線陣列之轉附 30

3-5-1 兩階段蝕刻法製備矽單晶奈米線陣列 30

3-5-2 轉附矽單晶奈米線陣列於異質基材 30

3-5-3 於異質基材上以金屬催化無電鍍法修飾矽單晶奈米線陣列 31

第四章 結論與未來展望 32

參考文獻 34

表目錄 42

圖目錄 43

參考文獻 [1] GE. Moore. "Cramming more components onto integrated circuits, 1965," Electronics Magazine (1965): 4.

[2] Søndergaard T. and Bozhevolnyi S. I. "Metal nano-strip optical resonators," Optics Express 15.7 (2007): 4198-4204.

[3] Peng K. Q., Wang X., Wu X., and Lee S. T. "Fabrication and photovoltaic property of ordered macroporous silicon," Applied Physics Letters 95.14 (2009): 143119.

[4] Newman D. M., Wears M. L., Jollie M., and Choo D. "Fabrication and characterization of nano-particulate PtCo media for ultra-high density perpendicular magnetic recording," Nanotechnology 18.20 (2007): 205301.

[5] Chithrani B. D., Ghazani A. A., and Chan W. C. "Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells," Nano Letters 6.4 (2006): 662-668.

[6] Wu W. W., He J. H., Cheng S. L., Lee S. W., and Chen L. J. "Self-assembled NiSi quantum-dot arrays on epitaxial Si0.7Ge0.3 on (001) Si," Applied Physics Letters 83.9 (2003): 1836-1838.

[7] Cheng S. L., C. H. Chung, and H. C. Lee. "A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrays on (001) Si substrates," Journal of The Electrochemical Society 155.11 (2008): D711-D714.

[8] Park W. I. and Yi G. C. "Electroluminescence in n‐ZnO nanorod arrays vertically grown on p‐GaN," Advanced Materials 16.1 (2004): 87-90.

[9] Lu X., Wang G., Zhai T., Yu M., Gan J., Tong Y., and Li Y. "Hydrogenated TiO2 nanotube arrays for supercapacitors," Nano Letters 12.3 (2012): 1690-1696.

[10] Jeong S., Garnett E. C., Wang S., Yu Z., Fan S., Brongersma, M. L., M.D McGehee,and Cui, Y. "Hybrid silicon nanocone–polymer solar cells," Nano Letters 12.6 (2012): 2971-2976.

[11] Yang Y. H., Ahn K. M., Kang S. M., Moon S. H., and Ahn B. T. "Fabrication of a high-performance poly-Si thin-film transistor using a poly-Si film prepared by silicide-enhanced rapid thermal annealing process," Electronic Materials Letters 10.6 (2014): 1081-1085.

[12] Liu G., Zhang J., Tan C. K., and Tansu N. "Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes," Photonics Journal, IEEE 5.2 (2013): 2201011-2201011.

[13] Wallentin J., Anttu N., Asoli D., Huffman M., Åberg I., Magnusson M. H., Gerald S, Peter FK, Frank D, Bernd W, H. Q. Xu, Lars S, Knut D, and Borgström, M. T. "InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit," Science 339.6123 (2013): 1057-1060.

[14] Chan C. K., Peng H., Liu G., McIlwrath K., Zhang X. F., Huggins R. A., and Cui Y. "High-performance lithium battery anodes using silicon nanowires," Nature Nanotechnology 3.1 (2008): 31-35.

[15] Black C. T. "Self-aligned self assembly of multi-nanowire silicon field effect transistors," Applied Physics Letters 87.16 (2005): 163116.

[16] Tian W. C., Ho Y. H., Chen C. H., and Kuo C. Y. "Sensing performance of precisely ordered TiO2 nanowire gas sensors fabricated by electron-beam lithography," Sensors 13.1 (2013): 865-874.

[17] Zhang G. J. and Ning Y. "Silicon nanowire biosensor and its applications in disease diagnostics: a review," Analytica Chimica Acta 749 (2012): 1-15.

[18] Zhang F., Song T., and Sun B. "Conjugated polymer–silicon nanowire array hybrid Schottky diode for solar cell application," Nanotechnology 23.19 (2012): 194006.

[19] Karki K., Epstein E., Cho J. H., Jia Z., Li, T., Picraux S. T., C. Wang and Cumings J. "Lithium-assisted electrochemical welding in silicon nanowire battery electrodes," Nano Letters 12.3 (2012): 1392-1397.

[20] Mohite A. D., Perea D. E., Singh S., Dayeh S. A., Campbell I. H., Picraux S. T., and Htoon H. "Highly efficient charge separation and collection across in situ doped axial VLS-grown Si nanowire p–n junctions," Nano Letters 12.4 (2012): 1965-1971.

[21] Misra S., Yu L., Foldyna M., and i Cabarrocas P. R. "High efficiency and stable hydrogenated amorphous silicon radial junction solar cells built on VLS-grown silicon nanowires," Solar Energy Materials and Solar Cells 118 (2013): 90-95.

[22] Li Y., Liang P., Yang X., Cai H., You Q., Sun J., Xu N. and Wu, J. "Fabrication and short-wavelength light emission of Si nanowires grown via quasi solid–liquid–solid mechanism," Materials Letters 134 (2014): 5-8.

[23] Yu L. and i Cabarrocas P. R. "Morphology control and growth dynamics of in-plane solid–liquid–solid silicon nanowires," Physica E: Low-dimensional Systems and Nanostructures 44.6 (2012): 1045-1049.

[24] Wang N., Tang Y. H., Zhang Y. F., Lee C. S., and Lee S. T. "Nucleation and growth of Si nanowires from silicon oxide," Physical Review B 58.24 (1998): R16024.

[25] Zhang, R. Q., Yeshayahu Lifshitz, and S. T. Lee. "Oxide‐assisted growth of semiconducting nanowires," Advanced Materials 15.7‐8 (2003): 635-640.

[26] Zhang R. Q., Lifshitz Y., and Lee S. T. "Production of vertical nanowire resonators by cryogenic-ICP–DRIE," Microsystem Technologies 20.4-5 (2014): 759-767.

[27] Li S., Ma W., Zhou Y., Chen X., Xiao Y., Ma M., Zhu W., and Wei F. "Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature," Nanoscale Research Letters9.1 (2014): 1-8.

[28] Ozdemir B., Kulakci M., Turan R., and Unalan H. E. "Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires," Nanotechnology 22.15 (2011): 155606.

[29] Zhang M. L., Peng K. Q., Fan X., Jie J. S., Zhang R. Q., Lee S. T., and Wong N. B. "Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching," The Journal of Physical Chemistry C 112.12 (2008): 4444-4450.

[30] Nakamura J., Higuchi K., and Maenaka K. "Vertical Si nanowire with ultra-high-aspect-ratio by combined top-down processing technique," Microsystem Technologies 19.3 (2013): 433-438.

[31] Huang Z., Zhang X., Reiche M., Liu L., Lee W., Shimizu T., Senz S. and Gösele U. "Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching," Nano Letters 8.9 (2008): 3046-3051.

[32] Chern W., Hsu K., Chun I. S., Azeredo B. P. D., Ahmed N., Kim K. H., Zuo J. M., Fang N., Ferreira P., and Li X. "Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays," Nano Letters 10.5 (2010): 1582-1588.

[33] Huang Z., Geyer N., Werner P., De Boor J., and Gösele U. "Metal‐assisted chemical etching of silicon: a review," Advanced Materials 23.2 (2011): 285-308.

[34] Tsai C. I., Yeh P. H., Wang C. Y., Wu H. W., Chen U. S., Lu M. Y., Wu W. W., Chen L. J. and Wang Z. L. "Cobalt silicide nanostructures: synthesis, electron transport, and field emission properties," Crystal Growth & Design 9.10 (2009): 4514-4518.

[35] Lee C. Y., Lu M. P., Liao K. F., Wu W. W., and Chen L. J. "Vertically well-aligned epitaxial Ni31Si12 nanowire arrays with excellent field emission properties," Applied Physics Letters 93.11 (2008): 113109-113109.

[36] Lin H. K., Tzeng Y. F., Wang C. H., Tai N. H., Lin I. N., Lee C. Y., and Chiu H. T. "Ti5Si3 nanowire and its field emission property," Chemistry of Materials 20.7 (2008): 2429-2431.

[37] Chi E. J., Shim J. Y., and Baik V. K. "Electrical characteristics of metal silicide field emitters," Vacuum Microelectronics Conference, 1996. IVMC′96., 9th International. IEEE, 1996.

[38] Cheng T. C., Chen P. Y., and Wu S. Y. "Paradox of low field enhancement factor for field emission nanodiodes in relation to quantum screening effects," Nanoscale Research Letters 7.1 (2012): 1-6.

[39] Kittl, J. A., Pawlak, M. A., Lauwers, A., Demeurisse, C., Opsomer, K., Anil, K. G., Vrancken C., van Dal M. J. H., Veloso A., Kubicek S., Absil P., Maex K., and Biesemans S. "Work function of Ni silicide phases on HfSiON and SiO2: NiSi, Ni2Si, Ni31Si12, and Ni3Si fully silicided gates," Electron Device Letters, IEEE 27.1 (2006): 34-36.

[40] Kim C. J., Kang K., Woo Y. S., Ryu K. G., Moon H., Kim J. M., Zhang D. S., and Jo M. H. "Spontaneous chemical vapor growth of NiSi nanowires and their metallic properties," Advanced Materials 19.21 (2007): 3637-3642.

[41] Schmitt A. L., Bierman M. J., Schmeisser D., Himpsel F. J., and Jin S. "Synthesis and properties of single-crystal FeSi nanowires," Nano Letters 6.8 (2006): 1617-1621.

[42] Schmitt A. L., Zhu L., Schmeiβer D., Himpsel F. J., and Jin S. "Metallic single-crystal CoSi nanowires via chemical vapor deposition of single-source precursor," The Journal of Physical Chemistry B 110.37 (2006): 18142-18146.

[43] Kang Y., Brockway L., and Vaddiraju S. "A simple phase transformation strategy for converting silicon nanowires into metal silicide nanowires: magnesium silicide," Materials Letters 100 (2013): 106-110.

[44] Lee S., Yoon J., Koo B., Shin D. H., Koo J. H., Lee C. J., Kim Y. W., Kim H.,and Lee T. "Formation of vertically aligned cobalt silicide nanowire arrays through a solid-state reaction," Nanotechnology, IEEE Transactions on 12.5 (2013): 704-711.

[45] Choi W. B., Chung D. S., Kang J. H., Kim H. Y., Jin Y. W., Han I. T., Lee Y. H., Jung J. E., Lee N. S., Park J. S., and Kim J. M. "Fully sealed, high-brightness carbon-nanotube field-emission display," Applied Physics Letters 75.20 (1999): 3129-3131.

[46] Kim J. W., Jeong J. W., Kang J. T., Choi S., Ahn S., and Song Y. H. "Highly reliable field electron emitters produced from reproducible damage-free carbon nanotube composite pastes with optimal inorganic fillers," Nanotechnology 25.6 (2014): 065201.

[47] Li C., Ding S., Lei W., Zhang X., and Wang B. "Enhanced field emission from vertically aligned carbon nanotubes on metal mesh electrode," Applied Surface Science 285 (2013): 505-508.

[48] Hong S. and Myung S. "Nanotube electronics: a flexible approach to mobility," Nature Nanotechnology 2.4 (2007): 207-208.

[49] Nomura K., Ohta H., Takagi A., Kamiya T., Hirano M., and Hosono H. "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature 432.7016 (2004): 488-492.

[50] Gwon H., Kim H. S., Lee K. U., Seo D. H., Park Y. C., Lee Y. S., Ahn P. T., and Kang K. "Flexible energy storage devices based on graphene paper," Energy & Environmental Science 4.4 (2011): 1277-1283.

[51] Liu B., Zhang J., Wang X., Chen G., Chen D., Zhou C., and Shen G. "Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries," Nano Letters 12.6 (2012): 3005-3011.

[52] Kang Y. R., Kang S. C., Paek K. K., Kim Y. K., Kim S. W., and Ju B. K. "Air-gap type film bulk acoustic resonator using flexible thin substrate," Sensors and Actuators A: Physical 117.1 (2005): 62-70.

[53] Bai F., Li M., Song D., Yu H., Jiang B., and Li Y. "Metal-assisted homogeneous etching of single crystal silicon: a novel approach to obtain an ultra-thin silicon wafer," Applied Surface Science273 (2013): 107-110.

[54] Do, K. S., Baek, T. H., Kang, M. G., Choi, S. J., Kang, G. H., Yu, G. J., Lee J. C., Myoung J-m., and Song H. E. "Experimental and simulation study for ultrathin (∼ 100 μm) mono crystalline silicon solar cell with 156× 156 mm2 area," Metals and Materials International 20.3 (2014): 545-550.

[55] Li S., Pei Z., Zhou F., Liu Y., Hu H., Ji S., and Ye C. "Flexible silicon/PEDOT: PSS hybrid solar cells," (2015).

[56] Tsakalakos L., Balch J., Fronheiser J., Korevaar B. A., Sulima O., and Rand J. "Silicon nanowire solar cells," Applied Physics Letters 91.23 (2007): 233117.

[57] Shiu S. C., Hung S. C., Chao J. J., and Lin C. F. "Massive transfer of vertically aligned Si nanowire array onto alien substrates and their characteristics," Applied Surface Science 255.20 (2009): 8566-8570.

[58] Spurgeon J. M., Boettcher S. W., Kelzenberg M. D., Brunschwig B. S., Atwater H. A., and Lewis N. S. "Flexible, polymer‐supported, Si wire array photoelectrodes," Advanced Materials 22.30 (2010): 3277-3281.

[59] Huang J. S., Hsiao C. Y., Syu S. J., Chao J. J., and Lin C. F. "Well-aligned single-crystalline silicon nanowire hybrid solar cells on glass," Solar Energy Materials and Solar Cells 93.5 (2009): 621-624.

[60] Peng K. Q., Yan Y. J., Gao S. P., and Zhu J. "Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry," Advanced Materials 14.16 (2002): 1164.

[61] Huang Z., Fang H., and Zhu J. "Fabrication of silicon nanowire arrays with controlled diameter, length, and density," Advanced Materials 19.5 (2007): 744-748.

[62] Cheng S. L., C. Y. Chen, and S. W. Lee. "Kinetic investigation of the electrochemical synthesis of vertically-aligned periodic arrays of silicon nanorods on (001) Si substrate," Thin Solid Films 518.6 (2010): S190-S195.

[63] Li X., Liang K., Tay B. K., and Teo E. H. "Morphology-tunable assembly of periodically aligned Si nanowire and radial pn junction arrays for solar cell applications," Applied Surface Science 258.17 (2012): 6169-6176.

[64] Huang Z., Zhang X., Reiche M., Liu L., Lee W., Shimizu T., Senz S., and Gösele U. "Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching," Nano Letters8.9 (2008): 3046-3051.

[65] Garnett E. and Yang P. "Light trapping in silicon nanowire solar cells," Nano Letters 10.3 (2010): 1082-1087.

[66] Sun B., Shi T., Sheng W., and Liao G. "Controlled fabrication of silicon nanowires via nanosphere lithograph and metal assisted chemical etching," Journal of Nanoscience and Nanotechnology 13.8 (2013): 5708-5714.

[67] Fang H., Wu Y., Zhao J., and Zhu J. "Silver catalysis in the fabrication of silicon nanowire arrays," Nanotechnology 17.15 (2006): 3768.

[68] Su S., Lin L., Li Z., Feng J., and Zhang Z. "The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays," Nanoscale Research lLetters 8.1 (2013): 1-7.

[69] Iwai H., Ohguro T., and Ohmi S. I. "NiSi salicide technology for scaled CMOS," Microelectronic Engineering 60.1 (2002): 157-169.

[70] Lasky J. B., Nakos J. S., Cain O. J., and Geiss P. J. "Comparison of transformation to low-resistivity phase and agglomeration of TiSi2 and CoSi2," Electron Devices, IEEE Transactions on 38.2 (1991): 262-269.

[71] Hsu H. F., Chan H. Y., Chen T. H., Wu, H. Y., Cheng S. L., and Wu F. B. "Epitaxial growth of uniform NiSi2 layers with atomically flat silicide/Si interface by solid-phase reaction in Ni–P/Si (100) systems," Applied Surface Science 257.17 (2011): 7422-7426.

[72] Lu J., Gao X., Zhang S. L., and Hultman L. "Crystallization of NiSix in a body-centered cubic structure during solid-state reaction between an ultrathin Ni film and Si (001) substrate at 150–350 °C," Crystal Growth & Design 13.5 (2013): 1801-1806.

[73] Connétable D. and Thomas O. "First-principles study of nickel-silicides ordered phases," Journal of Alloys and Compounds 509.6 (2011): 2639-2644.

[74] Ma Z. and Allen L. H. "Kinetic mechanisms of the C49-to-C54 polymorphic transformation in titanium disilicide thin films: A microstructure-scaled nucleation-mode transition," Physical Review B 49.19 (1994): 13501.

[75] Mann R. W., Miles G. L., Knotts T. A., Rakowski D. W., Clevenger L. A., Harper J. M. E., D’Heurle F. M., and Cabral Jr C. "Reduction of the C54–TiSi2 phase transformation temperature using refractory metal ion implantation," Applied Physics Letters 67.25 (1995): 3729-3731.

[76] Cabral, C., Clevenger, L. A., Harper, J. M. E., d′Heurle, F. M., Roy, R. A., Saenger, K. L., Miles G. L., and Mann R. W. "Lowering the formation temperature of the C54-TiSi2 phase using a metallic interfacial layer," Journal of Materials Research 12.02 (1997): 304-307.

[77] Jung B., Kim Y. D., Yang W., Nemanich R. J., and Jeon H. "Reduction of the phase transition temperature of TiSi2 on Si (111) using a Ta interlayer," MRS Proceedings. Vol. 564. Cambridge University Press, 1999.

[78] Kuwano H., Phillips J. R., and Mayer J. W. "Resistivity and morphology of TiSi2 formed on Xe+‐implanted polycrystalline silicon," Applied Physics Letters 56.5 (1990): 440-442.

[79] Ouyang L., Thrall E. S., Deshmukh M. M., and Park H. "Vapor-phase synthesis and characterization of ε-FeSi nanowires," Advanced Materials 18.11 (2006): 1437-1440.

[80] Liu C. Y., Li W. S., Chu L. W., Lu M. Y., Tsai C. J., and Chen L. J. "An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters," Nanotechnology 22.5 (2011): 055603.

[81] Hsu H. F., Huang W. R., Chen T. H., Wu H. Y., and Chen C. A. "Fabrication of Ni-silicide/Si heterostructured nanowire arrays by glancing angle deposition and solid state reaction," Nanoscale Research Letters 8.1 (2013): 1-7.

[82] Nakajima H. "The discovery and acceptance of the Kirkendall effect: The result of a short research career," JOM 49.6 (1997): 15-19.

[83] Lai H. Y., Huang C. W., Chiu C. H., Wang C. W., Chen J. Y., Huang Y. T., Lu K. C., and Wu W. W. "Real time observation of the formation of hollow nanostructures through solid state reactions," Analytical Chemistry 86.9 (2014): 4348-4353.

[84] Knez M., Scholz R., Nielsch K., Pippel E., Hesse D., Zacharias M., and Gösele U. "Monocrystalline spinel nanotube fabrication based on the Kirkendall effect," Nature Materials 5.8 (2006): 627-631.

[85] Chen J. Y., Huang L. S., Chu C. H., and Peizen C. "A new transferred ultra-thin silicon micropackaging," Journal of Micromechanics and Microengineering 12.4 (2002): 406.

[86] Knickerbocker J. U., Andry P. S., Dang B., Horton R. R., Patel C. S., Polastre R. J., Sakuma K., Sprogis E. S., Tsang C. K., Webb B. C., and Wright S. L. "3D silicon integration," Electronic Components and Technology Conference, 2008. ECTC 2008. 58th. IEEE, 2008.

[87] Burghartz J. N., Appel W., Harendt C., Rempp H., Richter H., and Zimmermann M. "Ultra-thin chip technology and applications, a new paradigm in silicon technology," Solid-State Electronics 54.9 (2010): 818-829.

[88] Weisse J. M., Kim D. R., Lee C. H., and Zheng X. "Vertical transfer of uniform silicon nanowire arrays via crack formation," Nano Letters 11.3 (2011): 1300-1305.

[89] Wang Y., Zhang X., Gao P., Shao Z., Zhang X., Han Y., and Jie J. "Air heating approach for multilayer etching and roll-to-roll transfer of silicon nanowire arrays as SERS substrates for high sensitivity molecule detection," ACS Applied Materials & Interfaces 6.2 (2014): 977-984.

[90] Shiu S. C., Syu H. J., Hung S. C., and Lin C. F. "Transfer of silicon nanowires onto alien substrates by controlling direction of metal-assisted etching," Nanotechnology (IEEE-NANO), 2010 10th IEEE Conference on. IEEE, 2010.

[91] Šatka A., Liday J., Srnánek R., Vincze A., Donoval D., Kováč J., Vesely´ M., and Michalka M. "Characterisation of titanium disilicide thin films," Microelectronics Journal 37.11 (2006): 1389-1395.

[92] Zhao F. F., Chen S. Y., Shen Z. X., Gao X. S., Zheng J. Z., See A. K., and Chan L. H. "Applications of micro-Raman spectroscopy in salicide characterization for Si device fabrication," Journal of Vacuum Science & Technology B 21.2 (2003): 862-867.

[93] Lim E. H., Karunasiri G., Chua S. J., Wong H., Pey K. L., and Lee K. H. "Monitoring of TiSi2 formation on narrow polycrystalline silicon lines using raman spectroscopy," Electron Device Letters, IEEE 19.5 (1998): 171-173.

[94] Huang Z., Shimizu T., Senz S., Zhang Z., Geyer N., and Gosele U. "Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon," The Journal of Physical Chemistry C 114.24 (2010): 10683-10690.

[95] Chen H., Wang H., Zhang X. H., Lee C. S., and Lee S. T. "Wafer-scale synthesis of single-crystal zigzag silicon nanowire arrays with controlled turning angles," Nano Letters 10.3 (2010): 864-868.

[96] Peng K., Zhang M., Lu A., Wong N. B., Zhang R., and Lee S. T. "Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching," Applied Physics Letters 90.16 (2007): 163123.

[97] Hussain M., Fahad H., and Qaisi R. "Contact engineering for nano‐scale CMOS," Physica Status Solidi (a) 209.10 (2012): 1954-1959.

指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2015-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明