博碩士論文 102324008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:3.15.147.215
姓名 徐晟睿(Cheng-Jui Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 鉬系材料應用於鎂電池正極之性質研究
(Mo-based materials as cathodes for magnesium batteries)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ 陽極沉積釩氧化物於離子液體中之擬電容行為
★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 離子液體電解質應用於石墨烯超級電容之特性分析★ 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極
★ 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極★ 電解質添加劑對鋅二次電池陽極電化學性質的影響
★ 電化學法所製備石墨烯及其硼摻雜改質之 超級電容特性分析★ 氫化二氧化鈦作為鋰、鈉、鎂鋰雙離子電池電極活性材料之電化學性質研究
★ 活性碳之粒徑與表面官能基以及所搭配的電解質配方對超高電容特性之影響★ 超臨界CO2合成SnO2、CoCO3與石墨烯複合材之儲鋰特性及陽極沉積層狀V2O5之儲鈉特性研究
★ 高濃度電解質於鋰電池知應用研究★ 熱解法製備硬碳材料應用於鈉離子電池負極
★ 活性碳粉之表面官能基及粒徑尺寸 對超高電容特性的影響★ 離子液體電解質於鈉離子電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 鎂金屬的熱力學性質使之成為吸引人的二次電池負極選項,相比於鋰和鉛,鎂有著低價位、低汙染和高安全性的特點。但鎂電池面臨著兩大困難,其一為鎂的高化學活性,使電解液的選擇受到相當程度的限制;其二為正極材料的選擇,鎂離子在很多材料中都不易完成嵌入嵌出,Mo6S8在2000年被提出,是能夠讓鎂離子嵌入嵌出的正極材料,但仍面臨鎂離子本身性質所造成之性能表現不如預期。
本研究選用Mo6S8作為第一樣探討之活性物質,先以固態反應法(solid state reaction)合成Cu2Mo6S8,經6 M鹽酸去除銅離子,獲得活性物質Mo6S8。在APC電解液中研究其室溫及高溫下之電化學性質,在室溫下僅約60 mAh/g,升溫至60℃時,性質提升至117 mAh/g,在電解質中加入鋰鹽,改變了工作離子,使其電化學性質在室溫下即可達127 mAh/g,故在此材料中離子的移動率(mobility)扮演著左右其儲能性質的角色。
在APC電解質中加入鋰鹽,改變了正極端的工作離子,可以使一些無法讓鎂離子嵌入的材料使用在此系統中,故本實驗選用之第二樣活性物質為MoS2,在僅有鎂離子存在之電解液時,幾乎無法儲能,但添加鋰離子於電解液中便可使此材料進行儲能,且其電化學行為與MoS2作用於鋰離子電池十分類似,在經過工作離子的改變後,電容值由極低推升至159 mAh/g,當充放電速度達500 mA/g時下仍可維持110 mAh/g的電容值。
為提升MoS2導電性,以球磨的方式加入10 wt%石墨烯及奈米碳管改善其導電性,在含Li之APC電解質中,電容值皆有顯著的進步,在25 mA/g由原材之159 mAh/g提升至210 mAh/g及190 mAh/g,當充放電速度提升至500 mA/g時仍維持有151 mAh/g及134 mAh/g之電容值。
摘要(英) Thermodynamic properties of magnesium make it an attractive anode material in secondary battery. As compared to lithium and lead, magnesium has advantages of low cost, environmental friendliness, high safety and easy handling. But there are still two major challenges in developing magnesium batteries. The first one is the high chemical activity of magnesium, leading to the formation of passive layer on Mg surface (obstructing Mg ions transportation) and limiting the selection of a suitable electrolyte. The other one is the selection of the cathode materials because magnesium ions are difficult to intercalate/deintercalate into the structure in most of cathode materials. Up to now, Mo6S8, reported in 2000, is one of a few cathode materials that can accommodate magnesium ions, but still faces the drawback of the magnesium ions.
In this study, Mo6S8 is chosen as the first active material for establishing the Mg battery system. Mo6S8 is fabricated by solid state reaction synthesis of Chevrel-phase Cu2Mo6S8, followed by removing copper ions in 6 M HCl. At room temperature, the capacity of Mg//Mo6S8 cell in APC electrolyte is about 60 mAh/g. In contrast, the cell capacity significantly increases to 117 mAh/g at elevated temperature of 60 C. Besides, adding lithium salt into APC electrolyte improves the cell capacity to 127 mAh/g even at room temperature. The changes of working ion and ion mobility are believed to play important roles in electrochemical and energy storage performance.
After showing the remarkable benefits of lithium salt addition in Mg//Mo6S8 cell, it is worth expanding this concept to other cathode materials, which are not capable of being intercalated/deintercalated by magnesium ions before. Among them, we introduce another active material MoS2, which magnesium ions cannot intercalate/deintercalate into the structure in APC electrolyte. After adding the lithium ion in the APC electrolyte, the Mg//MoS2 cell starts storing energy and its electrochemical behavior is very similar to MoS2 in lithium-ion system. The cell delivers impressive capacities of 159 mAh/g (at 25 mA/g) and 110 mAh/g at higher current rate of 500 mA/g, respectively.
To further improve the conductivity of MoS2, 10 wt% carbon nanotubes or graphene is incorporated into MoS2 via a ball milling process. The capacity of Mg//MoS2 cell is thus significantly advanced. Specifically, 190, and 210 mAh/g discharge capacities are obtained at 25 mA/g for the cells consisting of MoS2 cathode with carbon nanotubes and with graphene, respectively. At a higher current rate of 500 mA/g, the cells with carbon nanotubes and with graphene still deliver 134 and 151 mAh/g, respectively, outperforming 110 mAh/g obtained for the cell without carbon addition.
關鍵字(中) ★ 鎂電池
★ 硫化鉬
★ 鎂鋰雙鹽系統
關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xi
一、 緒論 1
二、 文獻回顧 3
2-1 儲能元件的發展 3
2-2電池的發展 3
2-2-1 鋰離子電池 (Li ion battery, LIB) 3
2-2-2 鎂離子電池 (Mg Battery) 4
2-2-3 鎂離子電池之負極材料 4
2-2-4 鎂離子電池之正極材料 6
2-2-5 鎂離子電池之電解液 7
2-3 固態反應法 (Solid state reaction) 9
2-4 碳材概論 10
三、 實驗方法及步驟 20
3-1 活性物質製備 20
3-1-1 Mo6S8之製備 20
3-1-2 MoS2及其複合材之製備 20
3-1-3電解質之調配 21
3-2 材料特性鑑定 22
3-2-1 活性物質之形貌分析 22
3-2-2 活性物質結晶結構分析 22
3-2-3 熱重分析 (Thermogravimetric analysis, TGA) 22
3-3 電化學測試實驗之步驟 22
3-3-1電解質製備、極片製作與鈕扣型電池封裝 22
3-3-2 循環伏安法 (Cyclic voltammetry, CV) 23
3-3-3 計時電位法 (Chronopotentimetry, CP) 24
3-3-4 交流阻抗(Electrochemical impedance spectroscopy, EIS) 24
四、 結果與討論 26
4-1 APC電解質及0.5 M Li 添加之APC電解質於不同基材以二極式鈕扣型電池測試 26
4-2 Mo6S8正極材料 30
4-2-1 Mo6S8之表面形貌 30
4-2-2 材料結構分析 30
4-2-3 電化學特性 30
4-3 MoS2正極材料 43
4-3-1 MoS2之表面形貌 43
4-3-2 材料結構分析 43
4-3-3 電化學特性 43
4-4碳材添加對MoS2電極材料性質之影響 54
4-4-1碳材添加後之MoS2表面形貌分析 54
4-4-2碳材添加後之MoS2材料結構及成分分析 54
4-4-3電化學特性 55
五、 結論 74
參考文獻 76
參考文獻 1. Levi, E., Y. Gofer, and D. Aurbach, On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials. Chemistry of Materials, 2010. 22(3): p. 860-868.
2. Staiger, M.P., et al., Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 2006. 27(9): p. 1728-1734.
3. Gofer, Y., et al., SECONDARY BATTERIES | Magnesium Batteries (Secondary and Primary), Encyclopedia of Electrochemical Power Sources, 2009, p. 285-301.
4. Yoo, H.D., et al., Mg rechargeable batteries: an on-going challenge. Energy & Environmental Science, 2013. 6(8): p. 2265-2279.
5. Scrosati, B. and J. Garche, Lithium batteries: Status, prospects and future. Journal of Power Sources, 2010. 195(9): p. 2419-2430.
6. Liang, Y., et al., Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode. Adv Mater, 2011. 23(5): p. 640-643.
7. Mohtadi, R. and F. Mizuno, Magnesium batteries: Current state of the art, issues and future perspectives. Beilstein J Nanotechnol, 2014. 5: p. 1291-1311.
8. Guo, Y., et al., Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries. Energy & Environmental Science, 2012. 5(10): p. 9100.
9. Malyi, O.I., et al., In search of high performance anode materials for Mg batteries: Computational studies of Mg in Ge, Si, and Sn. Journal of Power Sources, 2013. 233: p. 341-345.
10. Singh, N., et al., A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem Commun, 2013. 49(2): p. 149-151.
11. Arthur, T.S., N. Singh, and M. Matsui, Electrodeposited Bi, Sb and Bi1-xSbx alloys as anodes for Mg-ion batteries. Electrochemistry Communications, 2012. 16(1): p. 103-106.
12. Shao, Y., et al., Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries. Nano Lett, 2014. 14(1): p. 255-260.
13. Kondo, S., et al., A new synthetic method for Chevrel-phase compounds. Solid State Ionics, 1992. 57(1–2): p. 147-151.
14. Lancry, E., et al., Molten salt synthesis (MSS) of Cu2Mo6S8—New way for large-scale production of Chevrel phases. Journal of Solid State Chemistry, 2006. 179(6): p. 1879-1882.
15. Lancry, E., et al., Leaching Chemistry and the Performance of the Mo6S8 Cathodes in Rechargeable Mg Batteries. Chemistry of Materials, 2004. 16(14): p. 2832-2838.
16. Aurbach, D., et al., Prototype systems for rechargeable magnesium batteries. Nature, 2000. 407(6805): p. 724-727.
17. Levi, E., et al., Phase Diagram of Mg Insertion into Chevrel Phases, MgxMo6T8 (T = S, Se). 2. The Crystal Structure of Triclinic MgMo6Se8. Chemistry of Materials, 2006. 18(16): p. 3705-3714.
18. Stephenson, T., et al., Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci., 2014. 7(1): p. 209-231.
19. Yang, S., et al., First-Principles Study of Zigzag MoS2 Nanoribbon As a Promising Cathode Material for Rechargeable Mg Batteries. The Journal of Physical Chemistry C, 2012. 116(1): p. 1307-1312.
20. Liu, Y., et al., Sandwich-structured graphene-like MoS2/C microspheres for rechargeable Mg batteries. Journal of Materials Chemistry A, 2013. 1(19): p. 5822-5826.
21. Liu, Y., et al., Synthesis of rGO-supported layered MoS2 for high-performance rechargeable Mg batteries. Nanoscale, 2013. 5(20): p. 9562-7.
22. Huie, M.M., et al., Cathode materials for magnesium and magnesium-ion based batteries. Coordination Chemistry Reviews, 2015. 287: p. 15-27.
23. Mizrahi, O., et al., Electrolyte Solutions with a Wide Electrochemical Window for Rechargeable Magnesium Batteries. Journal of The Electrochemical Society, 2008. 155(2): p. A103.
24. Pour, N., et al., Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations. J Am Chem Soc, 2011. 133(16): p. 6270-8.
25. Matsui, M., Study on electrochemically deposited Mg metal. Journal of Power Sources, 2011. 196(16): p. 7048-7055.
26. Cheng, Y., et al., High performance batteries based on hybrid magnesium and lithium chemistry. Chem Commun, 2014. 50(68): p. 9644-9646.
27. Gofer, Y., et al., Improved Electrolyte Solutions for Rechargeable Magnesium Batteries. Electrochemical and Solid-State Letters, 2006. 9(5): p. A257-A260.
28. Cho, J.H., et al., Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. J Am Chem Soc, 2014. 136(46): p. 16116-16119.
29. Shao, Y., et al., Coordination chemistry in magnesium battery electrolytes: how ligands affect their performance. Sci Rep, 2013. 3: p. 3130.
30. Yoo, H.D., et al., High areal capacity hybrid magnesium-lithium-ion battery with 99.9% coulombic efficiency for large-scale energy storage. ACS Appl Mater Interfaces, 2015. 7(12): p. 7001-7.
31. Gao, T., et al., Hybrid Mg2+/Li+ Battery with Long Cycle Life and High Rate Capability. Advanced Energy Materials, 2015. 5(5): 1401507 (1-5).
32. Su, S., et al., A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte. Chem Commun, 2015. 51(13): p. 2641-2644.
33. Yagi, S., et al., A concept of dual-salt polyvalent-metal storage battery. J. Mater. Chem. A, 2014. 2(4): p. 1144-1149.
34. Kim, J.-K., Materials interfaces: Atomic-level structure and properties. Advanced Materials, 1993. 5(9): p. 685-686.
35. Choi, S.H., et al., Role of Cu in Mo6S8 and Cu Mixture Cathodes for Magnesium Ion Batteries. ACS Appl Mater Interfaces, 2015. 7(12): p. 7016-7024.
36. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nat Mater, 2007. 6(3): p. 183-191.
37. Nelson, E.G., et al., A magnesium tetraphenylaluminate battery electrolyte exhibits a wide electrochemical potential window and reduces stainless steel corrosion. J. Mater. Chem. A, 2014. 2(43): p. 18194-18198.
38. Wu, N., et al., Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation. Angew Chem Int Ed Engl, 2015. 54(19): p. 5757-61.
39. Burstein, G.T., et al., Origins of pitting corrosion. Corrosion Engineering, Science and Technology, 2004. 39(1): p. 25-30.
40. Lv, D., et al., A Scientific Study of Current Collectors for Mg Batteries in Mg(AlCl2EtBu)2/THF Electrolyte. Journal of the Electrochemical Society, 2012. 160(2): p. A351-A355.
41. Levi, M.D., et al., Kinetic and Thermodynamic Studies of Mg2+ and Li+ Ion Insertion into the Mo6S8 Chevrel Phase. Journal of The Electrochemical Society, 2004. 151(7): p. A1044-A1051.
42. Gocke, E., et al., Molybdenum cluster chalcogenides Mo6X8: intercalation of lithium via electron/ion transfer. Inorganic Chemistry, 1987. 26(11): p. 1805-1812.
43. Py, M.A. and R.R. Haering, Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Canadian Journal of Physics, 1983. 61(1): p. 76-84.
44. Goodenough, J.B., Review Lecture: Fast Ionic Conduction in Solids. 1984. 393: 215-234.
45. Li, Y., et al., Enhanced Li Adsorption and Diffusion on MoS2 Zigzag Nanoribbons by Edge Effects: A Computational Study. The Journal of Physical Chemistry Letters, 2012. 3(16): p. 2221-2227.
46. Whittingham, M.S., The Role of Ternary Phases in Cathode Reactions. Journal of The Electrochemical Society, 1976. 123(3): p. 315-320.
47. Benavente, E., et al., Intercalation chemistry of molybdenum disulfide. Coordination Chemistry Reviews, 2002. 224(1–2): p. 87-109.
48. Du, G., et al., Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chemical Communications, 2010. 46(7): p. 1106-1108.
49. Xiao, J., et al., Exfoliated MoS2 Nanocomposite as an Anode Material for Lithium Ion Batteries. Chemistry of Materials, 2010. 22(16): p. 4522-4524.

指導教授 張仍奎(Jeng-Kuei Chang) 審核日期 2015-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明