博碩士論文 102324009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.231.228.109
姓名 林毓峻(Yu-chun Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用團鏈共聚物模板製備具電晶體性質之氧化石墨烯奈米孔洞狀結構
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究
★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構★ 極性/非極性共溶劑退火法調控雙團鏈共聚物薄膜奈米微結構
★ 高分子接枝層調控對稱型雙嵌段共聚物層狀奈米微相結構之排向★ 氧化鋯奈米粒子在聚甲基丙烯酸酯薄膜分散、聚集及偏析行為
★ 結合共溶劑退火法及微接觸式壓印術製備具有微奈米層級結構之團鏈共聚物薄膜★ 結合溶劑蒸氣刺激及微米模板製備聚苯乙烯聚4-乙烯吡啶薄膜 之層級結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 場效應電晶體為一種利用電場加以控制半導體材料中,其材料的形貌及某一特定通道的電荷載體的傳導率。在此篇研究中,我們採用改良式的哈莫法,將石墨粉經由過錳酸鉀與硫酸共同作用,劇烈氧化之後合成出氧化石墨烯,而合成出來的氧化石墨烯在水中與乙醇溶液中具有良好的分散相。接著,將合成出來的氧化石墨烯藉由紫外光的照射進行還原,此一步驟並沒有光觸媒的參與,可以得到還原的氧化石墨烯。我們對氧化石墨烯及還原過後的氧化石墨烯進行性質鑑定,包含原子力顯微鏡討論表面形貌學、拉曼光譜鑑定鍵結與表面增強拉曼效應、紫外-可見光吸收譜圖、光電子能譜圖等等。我們在研究中亦利用了團鏈共聚物的自組裝特性,以微胞結構當作模板,製備出奈米粒子陣列,如氧化鋅,能夠扮演光觸媒的角色,用以形成孔洞狀的還原的氧化石墨烯材料。最後我們可以得到具有孔洞狀的還原的氧化石墨烯結構,稱為graphene-based nanomesh(GNM)。我們比較了不同種類的電晶體表現,一種為沒有光觸媒,直接還原的還原氧化石墨烯所製備的電晶體;另一種則是與氧化鋅陣列作用形成的還原氧化石墨烯的電晶體。這簡單快速的方法能夠有效地簡化現今的製程,並具有成本較低、低污染性的優點。
摘要(英) Field-effect transistor (FET) is a transistor that uses an electric field to control the shape and hence the conductivity of a channel of one type of charge carrier in a semiconductor material. In this work, graphene oxide (GO) was synthesized from oxidation graphite powders according to modified Hummers method. As a result, GO can well dispersed in H2O or ethanol. Next graphene oxide was subjected to photoreduction via direct UV irradiation without photocatalyst. Reduced graphene oxide (rGO) was obtained. Then block copolymer micelle lithography was applied to fabricate nano-particulate arrays such as ZnO, which play an role as a photocatalyst for the formation of nanoporous rGO materials. Finally we can fabricate the “graphene-based nanomesh(GNM)” FETs. We compare two types of FETs, one is made of rGO by UV irradiation in the absence of ZnO photocatalyst, and the other is made of rGO atop arrays of ZnO. This facile fabrication of rGO field-effect transistors can simplify the current procedures.
關鍵字(中) ★ 氧化石墨烯 關鍵字(英)
論文目次 目錄

摘要 i

Abstract ii

誌謝 iii

目錄 iv

圖目錄 viii

表目錄 xiii

一、 緒論 1

1-1 電晶體 1

1-1-1 歷史起源及分類 1

1-1-2 電晶體性質 4

1-2 石墨烯與氧化石墨烯 7

1-2-1 石墨烯介紹 7

1-2-2 氧化石墨烯介紹 11

1-2-3 氧化石墨烯合成與還原 13

1-3 石墨烯-電晶體應用 18

1-4 團鏈共聚物 21

1-4-1 團鏈共聚物之自組裝行為 21

1-4-2 雙親性團鏈共聚物 24

1-4-3 奈米粒子陣列控制 26

1-5 表面增強拉曼效應 29

1-5-1 拉曼光譜學原理 29

1-5-2 石墨烯與氧化石墨烯之表面增強拉曼效應 31

1-6 研究動機 34

二、 實驗方法 36

2-1 實驗用藥品 36

2-2 實驗用基材 37

2-3 實驗用儀器 37

2-4 儀器分析 38

2-4-1 原子力顯微鏡 38

2-4-2 光學顯微鏡 39

2-4-3 紫外-可見光分光光譜儀 40

2-4-4 拉曼光譜儀 41

2-4-5 X光電子能譜 43

2-4-6 X光繞射圖譜 44

2-5 實驗步驟 45

2-5-1 基材清洗 45

2-5-2 氧化石墨烯合成 46

2-5-3 高分子模板-氧化鋅陣列合成 48

2-5-4 氧化石墨烯還原 48

2-5-5 電晶體製備 49

2-5-6 表面增強拉曼效應檢測 49

三、 實驗結果與討論 50

3-1 氧化石墨烯的形貌及溶液態行為 50

3-1-1 表面形貌學 50

3-1-2 溶液態行為 52

3-2 拉曼光譜分析 56

3-3 光電子能譜圖分析 60

3-3-1 圖譜分峰 60

3-3-2 還原機制 64

3-4 紫外-可見光吸收譜圖分析 67

3-5 表面增強拉曼效應分析 68

3-6 氧化鋅陣列合成 72

3-6-1 表面形貌學 72

3-6-2 性質鑑定 74

3-7 電晶體表現 76

四、 結論 81

參考文獻 83

附錄 90
參考文獻 1. 林天送,「電晶體的發明」,科學發展 446,72-75(2010)

2. http://140.120.11.121/~ysuen/device_phys/reading/%B3%F5%AE%C4%B9q%B4%B9%C5%E9%C2%B2%A4%B6.pdf

3. Park, Y. D., Lim, J. A., Lee, H. S., Cho, K., “Interface engineering in organic transistors”, Mater. Today 10, 46–54(2007)

4. http://zh.wikipedia.org/wiki/%E6%99%B6%E4%BD%93%E7%AE%A1

5. Gummel, H. K., Poon, H. C., “An integral charge-control model of bipolar transistors”, Bell Syst. Tech. J. 49, 827–852(1970)

6. http://www.phy.ntnu.edu.tw/demolab/html.php?html=electronics/transistor

7. Dimitrakopoulos, C. D., Malenfant, P. R. L., “Organic field-effect transistors for large area electronics”, Adv. Mater. 14, 99-117(2002)

8. Hamadani, B. H., Gundlach, D. J., McCulloch, I., Heeney, M., “Undoped polythiophene field-effect transistors with mobility of 1 cm2V−1s−1”, Appl. Phys. Lett. 91, 243512(2007)

9. 莊鎮宇,「石墨烯簡介與熱裂解化學氣相合成方法石墨烯的近期發展」,物理雙月刊 33,155-162(2011)

10. Paredes, J. I., Villar-Rodil, S., Martınez-Alonso, A., Tascon, J. M. D., “Graphene Oxide Dispersions in Organic Solvents”, Langmuir 24, 10560-10564(2008)

11. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A., “Electric Field Effect in Atomically Thin Carbon Films”, Science 306, 666-669(2004)

12. Lee, C., Wei, X., Kysar, J. W., Hone, J., “Measurement of the Elastic Properties and Intrinsic strength of Monolayer Graphene”, Science 321, 385-388(2008)

13. Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R. D., Colombo, L., Ruoff, R. S., “Transfer of Large-Area Graphene Films for High-Performance”, Nano Lett. 9, 4359-4363(2009)

14. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R. D., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., Ruoff, R. D., “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”, Science 324, 1312-1314(2009)

15. Hibino, H., Kageshima, H., Nagase, M., “Epitaxial few-layer graphene: towards single crystal growth”, J. Phys. D Appl. Phys. 43, 374005(2010)

16. Li, D. M., Muller, M. B., Gilje, S., Kanner, R. B., Wallace, G. G., “Processable aqueous dispersions of graphene nanosheets”, Nat. Nanotechnol. 3, 101-105(2008)

17. Geim, A. K., Kim, P., “Carbon Wonderland”, Scientific American 298, 90-97(2008)

18. Bajpai, R., Roy S., Kulshrestha, N., Rafiee, J., Koratkar, N., Misra, D. S., ”Graphene supported nickel nanoparticle as a viable replacement for platinum in dye sensitized solar cells”, Nanoscale 4, 926-930(2012)

19. http://cnx.org/content/m34667/1.2/

20. 蘇清源,「石墨烯氧化物之特性與應用前景」,物理雙月刊 33,163-167(2011)

21. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C. N., “Superior Thermal Conductivity of Single-Layer Graphene”, Nano Lett. 8, 902-907(2008)

22. Hontoria-Lucas, C., Lopez-Peinado, A. J., López-González, J. de D., Rojas-Cervantes, M. L., Martín-Aranda, R. M., “Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization”, Carbon 33, 1585-1592(1995)

23. Brodie, B. C., "On the Atomic Weight of Graphite", Phil. Trans. R. Soc. Lond 149, 249–259(1859)

24. Staudenmaier, L., “Verfahren zur Darstellung der Graphitsäure”, Ber. Dtsch. Chem. Ges. 31, 1481-1487(1898)

25. Hummers Jr., W. S., Offeman, R. E., “Preparation of Graphitic Oxide”, J. Am. Chem. Soc. 80, 1339(1958)

26. Koch, K. R., Krause, P. F., “Oxidation by dimanganese heptoxide: an impressive demonstration”, J. Chem. Educ. 59, 973-974(1982)

27. Lee, K. E., Kim, J. E., Maiti, U. N., Lim, J., Hwang, J. O., Shim, J., Oh, J. J., Yun, T., Kim, S. O., “Liquid Crystal Size Selection of Large-Size Graphene Oxide for Size-Dependent N‑Doping and Oxygen Reduction Catalysis”, ACS Nano 8, 9073-9080(2014)

28. Eda, G., Fanchini, G., Chhowalla, M., “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material”, Nat. Nanotechnol. 3, 270- 274(2008)

29. Stankovich, S., Dikin, D. A., Dommet, G. H. B., Kohlhaa, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguye, S. T., Ruoff, R. S., “Graphene-based composite materials”, Nature 442, 282-286(2006)

30. Williams, G., Seger, B., Kamat, P. V., “TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide”, ACS Nano 2, 1487-1491(2008)

31. Williams, G., Kamat, P. V., ”Graphene-Semiconductor Nanocomposites: Excited-State Interactions between ZnO Nanoparticles and Graphene Oxide”, Langmuir 25, 13869-13873(2009)

32. Ding, Y. H., Zhang, P., Zhuo, Q., Ren, H. M., Yang, Z. M., Jiang, Y., “A green approach to the synthesis of reduced graphene oxide nanosheets under UV irradiation”, Nanotechnology 22, 215601(2011)

33. Wu, T., Liu, S., Li, H., Wang, L., Sun, X., “Production of Reduced Graphene Oxide by UV Irradiation”, J. Nanosci. Nanotechnol. 11, 1–4(2011)

34. Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M. S., “Edge state in graphene ribbons: nanometer size effect and edge shape dependence”, Phys. Rev. B 54, 17954–17961(1996)

35. Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H., “Narrow graphene nanoribbons from carbon nanotubes”, Nature 458, 877–880(2009)

36. Bai, J., Zhong, X., Jiang, S., Huang, Y., Duan, X., “Graphene Nanomesh”, Nat. Nanotechnol. 5, 190-194(2010)

37. Akhavan, O., “Graphene Nanomesh by ZnO Nanorod Photocatalysts”, ACS Nano 4, 4174-4180(2010)

38. Zeng, Z., Huang, X., Yin, Z., Li, H., Chen, Y., Li, H., Zhang, Q., Ma, J., Boey, F., Zhang, H., “Fabrication of Graphene Nanomesh by Using an Anodic Aluminum Oxide Membrane as a Template”, Adv. Mater. 24, 4138-4142(2012)

39. Forster, S., Antonietti, M., “Amphiphilic Block Copolymers in Structure-Controlled Nanomaterial Hybrids”, Adv. Mater. 10, 195-217(1998)

40. Matsen, M. W., Bates, F. S., “Unifying Weak- and Strong-Segregation Block Copolymer Theories”, Macromolecules 29, 1091-1098(1996)

41. Khandpur, A. K., Foerster, S., Bates, F. S., Hamley, I. W., Ryan, A. J., Bras, W., Almdal, K., Mortensen, K., “Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition”, Macromolecules 28, 8796–8806(1995)

42. Gaot, Z., Eisenberg, A., “A Model of Micellization for Block Copolymers in Solutions”, Macromolecules 26, 7353-7360(1993)

43. Riess, G., “Micellization of Block Copolymers”, Prog. Polym. Sci. 28, 1107-1170(2003)

44. Boyen, H. G., Kastle, G, Zurn, K., Herzog, T., Weigl, F., Ziemann, P., Mayer, O., Jerome, C., Moller, M., Spatz, J. P., Garnier, M. G., Oelhafen, P., “A Micellar Route to Ordered Arrays of Magnetic Nanoparticles: From Size-Selected Pure Cobalt Dots to Cobalt–Cobalt Oxide Core–Shell Systems”, Adv. Funct. Mater. 13, 359-364(2003)

45. Spatz, J. P., Mossmer, S., Hartmann, C., Moller, M., Herzog, T., Krieger, M., Boyen, H. G., Ziemann, P., Kabius, B., “Ordered Deposition of Inorganic Clusters from Micellar Block Copolymer Films”, Langmuir 16, 407-415(2000)

46. Fahmi, A., Pietsch, T., Mendoza, C., Cheval, N., “Functional Hybrid Materials”, Mater. Today 12, 44-50(2009)

47. Campion, A., Kambhampati, P., “Surface-enhanced Raman scattering”, Chem. Soc. Rev. 27, 241-250(1998)

48. http://zh.wikipedia.org/wiki/%E6%8B%89%E6%9B%BC%E5%85%89%E8%AD%9C%E5%AD%B8

49. Fleischmann, M., Hendra, P. J., McQuillan, A. J., “Raman spectra of pyridine adsorbed at a silver electrode”, Chem. Phys. Lett. 26, 163-166(1974)

50. Otto, A., Mrozek, I., Grabhorn, H., Akemann, W., “Surface-enhanced Raman scattering”, J. Phys. Condens. Matter 4, 1143-1212(1992)

51. Ling, X., Xie, L., Fang, Y., Xu, H., Zhang, H., Kong, J., Dresselhaus, M. S., Zhang, J., Liu, Z., “Can Graphene be used as a Substrate for Raman Enhancement”, Nano Lett. 10, 553-561(2010)

52. Yu, X., Cai, H., Zhang, W., Li, X., Pan, N., Luo, Y., Wang, X., Hou, J. G., “Tuning Chemical Enhancement of SERS by Controlling the Chemical Reduction of Graphene Oxide Nanosheets”, ACS Nano 5, 952-958(2011)

53. Dreyer, D. R., Park, S., Bielawski, C. W., Ruoff, R. S., “The chemistry of graphene oxide”, Chem. Soc. Rev. 39, 228-240(2010)

54. Zhang, Y., Ma, H. L., Zhang, Q., Peng, J., Li, J., Zhai, M., Yu, Z. Z., “Facile synthesis of well-dispersed graphene by γ-ray induced reduction of graphene oxide”, J. Mater. Chem. 22, 13064-13069(2012)

55. Matsumoto, Y., Koinuma, M., Ida, S., Hayami, S., Taniguchi, T., Hatakeyama, K., Tateishi, H., Watanabe, Y., Amano, S., “Photoreaction of Graphene Oxide Nanosheets in Water”, J. Phys. Chem. C 115, 19280–19286(2011)

56. Heit, G., Neuner, A., Saugy, P. Y., Braun, A. M., “Vacuum-UV (172 nm) Actinometry. The Quantum Yield of the Photolysis of Water”, J. Phys. Chem. A 102, 5551-5561(1998)

57. Yeh, T. F., Syu, J. M., Cheng, C., Chang, T. H., Teng, H., “Graphite Oxide as a Photocatalyst for Hydrogen Production from Water”, Adv. Funct. Mater. 20, 2255-2262(2010)

58. Xie, L., Ling, X., Fang, Y., Zhang, J., Liu, Z., “Graphene as a Substrate To Suppress Fluorescence in Resonance Raman Spectroscopy”, J. Am. Chem. Soc. 131, 9890-9891(2009)

59. Jensen, L., Schatz, G. C., “Resonance Raman Scattering of Rhodamine 6G as Calculated Using Time-Dependent Density Functional Theory”, J. Phys. Chem. A 110, 5973-5977(2006)

60. Krishnamoorthy, S., Pugin, R., Brugger, J., Heinzelmann, H., Hinderling, C., “Tuning the Dimensions and Periodicities of Nanostructures Startingfrom the Same Polystyrene-block-poly(2-vinylpyridine) Diblock Copolymer”, Adv. Funct. Mater. 16, 1469-1475(2006)

61. Hsiao, C. C., Yu, S. Y., “Improved Response of ZnO Films for Pyroelectric Devices”, Sensors 12, 17007-17022(2012)

62. Biesinger, M. C., Lau, L. W. M., Gerson, A. R., Smart, R. St. C., “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn”, Appl. Surf. Sci. 257, 887–898(2010)

63. Gayaa, U. I., Abdullaha, A. H., “Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems”, J. Photochem. Photobiol. C 9, 1-12(2008)

64. Kuo, T. J., Lin, C. N., Kuo, C. L., Huang, M. H., “Growth of Ultralong ZnO Nanowires on Silicon Substrates by Vapor Transport and Their Use as Recyclable Photocatalysts”, Chem. Mater. 19, 5143-5147(2007)

指導教授 孫亞賢(Ya-sen Sun) 審核日期 2015-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明