博碩士論文 102324019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.233.239.20
姓名 林柏岩(Po-Yen Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Common Agitated Tank Common Agitated Tank Common Agitated Tank Common Agitated TankCommon Agitated Tank Common Agitated Tank Common Agitated TankCommon)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文的研究主旨在於探討不同平板式檔板與攪拌槽大小對富馬酸二甲酯球晶製程影響。 在本篇研究中,我們運用0.5公升、2公升與10公升攪拌槽進行富馬酸二甲酯球晶製程,三種不同規格檔板被運用在相同攪拌槽與相同操作條件進行球晶製備,其分別為美國標準規格檔板、歐洲標準規格檔板與川島規格檔板,為了系統性地挑選球晶製程溶劑組合,我們對富馬酸二甲酯進行初始溶劑篩選,藉由初始溶劑篩選的結果可以建立富馬酸二甲酯的溶劑組合表以進行溶劑挑選。
由球晶顆粒大小分佈直方圖,我們發現在相同操作條件與相同桶槽大小下,球晶大小分佈會因為攪拌槽安裝不同規格檔板產生變化,此外,當以不同大小攪拌槽進行相同操作,球晶的產量會隨著攪拌槽放大而下降。本研究中,傅立葉轉換紅外線光譜儀、常溫示差掃描熱分析儀與X光繞射分析儀被運用來鑑定產物的晶型排列與結晶度,綜合紅外光圖譜、熱分析圖譜與X光繞射圖譜分析結果,產物的晶形排列不會受到球晶製程影響但結晶度具有差異,有關球晶溶離速率、顆粒流動性、機械強度與密度方面,相同大小的球晶會具有相同的溶離速率與流動性,然而,相同大小的球晶機械強度與密度會因為攪拌槽大小與檔板的不同而改變,較大的攪拌槽與較窄的檔板會使得球晶機械強度與密度下降,而藉由拉長攪拌時間則可以提高球晶機械強度與密度。
摘要(英) The aim of this thesis is to study the effects of baffle configuration and different vessel sizes on the spherical agglomeration process. Spherical agglomeration was operated in the 0.5 L-, 2 L-, 10 L-sized stirred vessels with the standard dimensions and the arrangement of impeller diameter, impeller location and liquid level. The stirred vessel installed with the standard US vertical baffle type or the European baffle type, or the Kawashima baffle type was used to prepare the spherical agglomerates of dimethyl fumarate. Initial solvent screening was used to establish the form space of dimethyl fumarate for selecting the useful solvent combination in spherical agglomeration process. It was found that the particle size distribution of agglomerates prepared in the stirred vessel installed with different baffle types at the same operating conditions could vary significantly, and plenty of powders did not assemble into granules in the large size of vessel under the same operating conditions. The polymorphism of spherical agglomerates did not transform after cohering the powders into the granules, but the crystallinity of the agglomerates was slightly altered. The size-related properties, such as dissolution profile and flowability, of granules from the same size cut remained unchanged. The interior structure-related properties, such as density and mechanical property, of granules from the same size cut upon baffle change and scale up were decayed. However, granules could become denser and stronger by prolonged maturation time.
關鍵字(中) ★ 球晶
★ 製成放大
★ 檔板
★ 富馬酸二甲酯
關鍵字(英) ★ spherical agglomeration
★ scale up
★ baffle type
★ dimethyl fumarate
論文目次 摘要 i
Abstract ii
Acknowledgement iii
List of Figures vii
List of Tables xi
Chapter 1 Excusive Summary 1
1.1 Introduction 2
1.2 Introduction of Dimethyl Fumarate 7
1.3 Conceptual Framework 9
1.4 References 10
Chapter 2 Brief review 16
2.1 Spherical Crystallization Techniques 16
2.1.1 Spherical Agglomeration Method (SA) 17
2.1.2 Quasi-Emulsion Solvent Diffusion Method (QESD) 19
2.1.3 Ammonia Diffusion System (ADS) 21
2.1.4 Neutralization Method (NT) 22
2.1.5 Crystal-Co-Agglomeration Technique (CCA) 23
2.2 Effect of Operating Parameters 25
2.2.1 Bridging Liquid Type and Amount of Bridging Liquid 25
2.2.2 Agitator Speed 26
2.2.3 Maturation Time 26
2.2.4 Initial Particle Size and Solid Loading 27
2.2.5 Feeding Rate 27
2.2.6 Temperature 27
2.3 References 28
Chapter 3 Preparation and Characterization of Spherical Agglomerates in Dimethyl Fumarate 33
3.1 Introduction 33
3.1.1 The Effect of Inner Arrangement in a Stirred Vessel 33
3.2 Materials 37
3.2.1 Chemical 37
3.2.2 Solvents 37
3.3 Experimental Procedures 39
3.3.1 Initial Solvent Screening 39
3.3.2 Ball Milling 39
3.3.3 Spherical Agglomeration 40
3.3.4 Analytical Measurements 44
3.3.5 Instrumentation 51
3.4 Results and Discussion 54
3.4.1 Solvent Combination 54
3.4.2 Range of Operating Conditions 57
3.4.3 Effect of Operating Parameters 60
3.4.4 Characterizations of Agglomerates 61
3.4.5 Effect of Baffle Width 63
3.4.6 Effect of Vessel Size 70
3.4.7 Dissolution Behavior 81
3.5 Conclusions 85
3.6 References 86
Chapter 4 Future works 91
參考文獻 Chapter 1
Siddiqui, M. D. N.; Garg, G.; Sharma, P. K. A short review on a novel approach in oral fast dissolving drug delivery system and their patents. Adv. Biol. Res. 2011, 5(6), 291-303.
Byn, S.; Morris, K.; Comella, S. Reducing time to market with a science-based management strategy. Pharm. Tech. 2005, Aug 01, 46-56.
Seppälä, K.; Heinämäki, J.; Hatara, J.; Seppälä, L.; Yliruusi, J. Development of a new method to get a reliable powder flow characteristics using only 1 to 2 g of powder. AAPS PharmSciTech. 2010, 11(1), 402-408.
Shahhet, L.; Al¬raghban, A.; Chehna, M. F. Improvement of the physicochemical properties of amoxicillin trihydrate powder by recrystallization at different pH values. Int. J. Pharm. Pharm. Sci. 2011, 3(3), 92­100.
Kovačič, B.; Vrečer, F.; Planinšek, O. Spherical crystallization of drugs. Acta Pharm. 2012, 62(1), 1-14.
Maghsoodi, M. How spherical crystallization improves direct tableting properties: A review. Adv. Pharm. Bull. 2012, 2(2), 253-257.
Mahanty, S.; Sruti, J.; Patra, Ch. N.; Rao, M. E. B. Particle design of drugs by spherical crystallization techniques. Int. J. Pharm. Sci. Nanotech. 2010, 3(2), 912-918.
Yadav, A. V.; Shete, A. S.; Dabke, A. P.; Kulkarni, P. V.; Sakhare, S. S. Co-crystals: A novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J. Pharm. Sci. 2009, 71(4), 359-370.
Nokhodchi, A.; Maghsoodi, M.; Hassanzadeh, D. An improvement of physicomechanical properties of carbamazepine crystals. Iran. J. Pharm. Res. 2007, 6(2), 83-93.
Rasenack, N.; Müller, B. W. Dissolution rate enhancement by in situ micronization of poorly water-soluble drugs. Pharm. Res. 2002, 19(12), 1894-1900.
Joshi, J. T. A. Review on micronization techniques. J. Pharm. Sci. Tech. 2011, 3(7), 651-681.
Saleem, I. Y.; Smyth, H. D. C. Micronization of a soft material: Air-jet and micro-ball milling. AAPS PharmSciTech. 2010, 11(4), 1642-1649.
Khadkaa, P.; Ro, J.; Kim, H.; Kim, I.; Kim, J. T.; Kim, H.; Cho, J. M.; Yun, G.; Lee, J. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharmacol. 2014, 9(6), 304-316.
Maghsoodi, M. Effect of process variables on physicomechanical properties of the agglomerates obtained by spherical crystallization technique. Pharm. Dev. Technol. 2011, 16(5), 474-482.
Cantora, S. L.; Kothari, S.; Koo, O. M. Y. Evaluation of the physical and mechanical properties of high drug load formulations: Wet granulation vs. novel foam granulation. Powder Technol. 2009, 195(1), 15-24.
Sakr, W. F.; Ibrahim, M. A.; Alanazi, F. K.; Sakr, A. A. Upgrading wet granulation monitoring from hand squeeze test to mixing torque rheometry. Saudi Pharm. J. 2012, 20(1), 9-19.
Mangwandi, C.; Adams, M. J.; Hounslow, M. J.; Salman, A. D. Effect of batch size on mechanical properties of granules in high shear granulation. Powder Technol. 2011, 206(1-2), 44-52.
Rajniak, P.; Mancinelli, C.; Chern, R. T.; Stepanek, F.; Farber L.; Hill, B. T. Experimental study of wet granulation in fluidized bed: Impact of the binder properties on the granule morphology. Int. J. Pharm. 2007, 334(1-2), 92-102.
Hansuld E. M.; Briens, L. A review of monitoring methods for pharmaceutical wet granulation. Int. J. Pharm. 2014, 472(1-2), 192-201.
Yoshinari, T.; Forbes, R. T.; York P.; Kaishima, Y. Moisture induced polymorphic transition of mannitol and its morphological transformation. Int. J. Pharm. 2002, 247(1-2), 69-77.
Guo, Z.; Ma, M.; Wang, T.; Chang, D.; Jiang, T.; Wang, S. A kinetic study of the polymorphic transformation of nimodipine and indomethacin during high shear granulation. AAPS PharmSciTech. 2011, 12(2), 610-619.
Morin, G.; Briens, L. A comparison of granules produced by high-shear and fluidized-bed granulation methods. AAPS PharmSciTech. 2014, 15(4), 1039-1048.
Kaishima, Y.; Okumura, M.; Takenaka, H. Spherical crystallization: Direct spherical agglomeration of salicylic acid crystals during crystallization. Science 1982, 216(4550), 1127-1128.
Patil, S. V.; Sahoo, S. K. Pharmaceutical overview of spherical crystallization. Der. Pharmacia. Lettre. 2010, 2(1), 421-426.
Garg, J.; Khatry, S.; Arora, S. Spherical crystallization: An overview. Int. J. Pharm. 2012, 4(1), 1909-1928.
Patil, S. V.; Sahoo, S. K. Improvement in compressibility, flowability and drug release of glibenclamide by spherical crystallization with additives. Dig. J. Nanomater. Bios. 2011, 6(4), 1463-1477.
Kulkarni, P. K.; Dixit, M.; Jain, A. Spherical agglomeration of naproxan by solvent change method. S. J. Pharm. Sci. 2011, 4(1), 1-8.
Tapas, A. R.; Kawtikwar, P. S.; Sakarkar, D. M. Enhanced dissolution rate of felodipine using spherical agglomeration with inutec SP1 by quasi emulsion solvent diffusion method. Res. Pharm. Sci. 2009, 4(2), 77-84.
Dixit, M.; Kulkarni, P. K.; Vaghela, R. S. Effect of different crystallization techniques on the dissolution behavior of ketoprofen. Trop. J. Pharm. Res. 2013, 12 (3), 317-322.
Gupta, V. R.; Mutalik, S.; Patel, M. M.; Jani, G. K. Spherical crystals of celecoxib to improve solubility, dissolution rate and micromeritic properties. Acta Pharm. 2007, 57(2), 173-184.
Patel, S.; Patel, K. R.; Patel, N. M. Spherical crystallization: An overview. Int. J. Univers. Pharm. Bio. Sci. 2013, 2(1), 184-195.
Pandey, S.; Patil, A. T. Preparation, evaluation and need of spherical crystallization in case of high speed direct tableting. Curr. Drug Deliv. 2014, 11(2), 179-190.
Chow, A. H. L.; Leung, M. W. M. A study of the mechanisms of wet spherical agglomeration of pharmaceutical powders. Drug Dev. Ind. Pharm. 1996, 22(4), 357-371.
Lee, T.; Su, Y. C.; Hou, H. J.; Hsieh, H. Y. Spherical crystallization for lean solid-dose manufacturing (Part I). Pharm. Technol. 2010, 34(4), 72-75.
Lee, T.; Su, Y. C.; Hou, H. J.; Hsieh, H. Y. Spherical crystallization for lean solid-dosage manufacturing (Part II). Pharm. Technol. 2010, 34(4), 88-103.
Katta, J.; Rasmuson, Å. C. Spherical crystallization of benzoic acid. Int. J. Pharm. 2008, 348(1-2), 61-69.
Thati, J.; Rasmuson, Å. C. On the mechanisms of formation of spherical agglomerates. Eur. J. Pharm. Sci. 2011, 42(4), 365-379.
Held, K. D.; Epp, E. R.; Clark, E. P.; Biaglow, J. E. Effect of dimethyl fumarate on the radiation sensitivity of mammalian cells in vitro. Radiat. Res. 1988, 115(3), 495-502.
Mrowietz, U.; Altmeyer, P.; Bieber, T.; Röcken, M.; Schopf, R. E.; Sterry, W. Treatment of psoriasis with fumaric acid esters (Fumaderm®). J. Dtsch. Dermatol. Ges. 2007, 5(8), 716-717.
Meissner, M.; Valesky, E. M.; Kippenberger, S.; Kaufmann, R. Dimethyl fumarate-only an anti-psoriatic medication?. J. Dtsch. Dermatol. Ges. 2012, 10(11), 793-801.
Jarvis, L. M. The year in new drugs. C&EN 2014, 92(4), 10-13.
Kubal, G.; Meyer, D. J.; Norman, R. E.; Sadler, P. J. Investigations of glutathione conjugation in vitro by 1H NMR spectroscopy. Uncatalyzed and glutathione transferase-catalyzed reactions. Chem. Res. Toxicol. 1995, 8(5), 780-791.
Schmidt, T. J.; Ak, M.; Mrowietz, U. Reactivity of dimethyl fumarate and methylhydrogen fumarate towards glutathione and N-acetyl-l-cysteine-Preparation of S-substituted thiosuccinic acid esters. Bio. Org. Med. Chem. 2007, 15(1), 333-342.

Chapter 2
Farnand, J. R.; Smith, H. M.; Puddington, I. E. Spherical agglomeration of solids in liquid suspension. Can. J. Chem. Eng. 1961, 39(4), 94-97.
Sirianni, A. F.; Capes, C. E.; Puddington, I. E. Recent experience with the spherical agglomeration process. Can. J. Chem. Eng. 1969, 47(2), 166-170.
Kawashima, Y.; Capes, C. E. An experimental study of the kinetics of spherical agglomeration in as stirred vessel. Powder Technol. 1974, 10(1-2), 85-92.
Kawashima, Y.; Capes, C. E. Further studies of the kinetics of spherical agglomeration in a stirred vessel. Powder Technol. 1976, 13(2), 279-88.
Kawashima, Y.; Aoki, S.; Takenaka, H. Spherical agglomeration of aminophylline crystals during reaction in liquid by the spherical crystallization technique. Chem. Pharm. Bull. 1982, 30(5), 1900-1902.
Lasagabaster, A.; Martin, C.; Goni, M. M. Preparation of spherically agglomerated crystals of the 3,5-diglucoside of cyaniding (CYANIN). J. Chem. Tech. Biotechnol. 1994, 60(4), 397-403.
Bausch, A.; Leuenberger, H. Wet spherical agglomeration of proteins as a new method to prepare parenteral fast soluble dosage forms. Int. J. of Pharm. 1994, 101(1-2), 63-70.
Sadowski, Z. Selective spherical agglomeration of fine salt type mineral particles in aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 1995, 96(3), 277-285.
Sutherland, J. P. The agglomeration of aqueous suspensions of graphite. Can. J. Chem. Eng. 1962, 40(12), 268-272.
Lee, T.; Chen, J. W.; Lee, H. L.; Lin, T. Y.; Tsai, Y. C.; Cheng, S.L.; Lee, S. W.; Hu, J. C.; Chen, L. T. Stabilization and spheroidization of ammonium nitrate: Co-crystallization with crown ethers and spherical crystallization by solvent screening. Chem. Eng. J. 2013, 225(1), 809-817.
Lee, T.; Su, Y. C.; Hou, H. J.; Hsieh, H. Y. Spherical crystallization for lean solid-dose manufacturing (Part I). Pharm. Technol. 2010, 34(4),72-75
Maghsoodi, M. Effect of process variables on physicomechanical properties of the agglomerates obtained by spherical crystallization technique. Pharm. Dev. Technol. 2011, 16(5), 474-482.
Huang, A. Y.; Berg, J. C. Gelation of liquid bridges in spherical agglomeration. Colloids Surf. A Physicochem. Eng. Asp. 2003, 215(1-3), 241-252.
Kovačič, B.; Vrečer, F.; Planinšek, O. Spherical crystallization of drugs. Acta Pharm. 2012, 62(1), 1-14.
Kawashima, Y.; Niwa, T.; Handa, T.; Takeuchi, H.; Iwamoto, T.; Itoh, K. Preparation of controlled-release microspheres of ibuprofen with acrylic polymers by a novel quasi-emulsion solvent diffusion method. J Pharm Sci. 1989, 78(1), 68-72.
Ghenge, G. R.; Pande, S. D.; Birari, T. K.; Jejurkar, L. S.; Ahmad A. An overview to spherical crystalisation and its evaluation. Int. J. App. Pharm. 2011, 3(3), 1-6.
Mastai, Y. Advances in crystallization processes. InTech, Rijeka, 2012; Chapter 25, pp. 633-648.
Garg, J.; Khatry, S.; Arora, S. Spherical crystallization: An overview. Int. J. Pharm. 2012, 4(1), 1909-1928.
Nocent, M.; Bertocchi, L.; Espitalier, F.; Baron, M.; Couarraze, G. Definition of a solvent system for spherical crystallization of salbutamol sulfate by quasi-emulsion solvent diffusion (QESD) method. J. Pharm. Sci. 2001, 90(10), 1620-1627.
Ueda, M.; Nakamura, Y.; Makita, H.; Imasato, Y.; Kawashima, Y. Particle design of enoxacin by spherical crystallization technique. I. Principle of ammonia diffusion system (ADS). Chem. Pharm. Bull. 1990, 38(9), 2537-2541.
Puechagut, H. G.; Bianchotti, J.; Chiale, C. A. Preparation of norfloxacin spherical agglomerates using the ammonia diffusion system. J. Pharm. Sci. 1998, 87(4), 519-523.
Gohel, M. C.; Parikh, R. K.; Shah, H.; Dubey, R. R. Improvement in flowability and compressibility of ampicillin trihydrate by spherical crystallization. Indian J. Pharm. Sci. 2003, 65(6), 634-637.
Viswanathan, C. L.; Kulkarni, S. K.; Kolwankar, D. R. Spherical agglomeration of mefenamic acid and nabumetone to improve micromeritics and solubility: A technical note AAPS PharmSciTech. 2006, 7(2), E122-E125.
Bharti, N.; Bhandari, N.; Sharma, P.; Singh, K.; Kumar, A. Spherical crystallization: A novel drug delivery approach. Asian J. Biomed. Pharm. Sci. 2013, 3(18), 10-16.
Kawashima, Y.; Handa, T.; Takeuchi, H.; Okumura, M.; Katou, H.; Nagata, O. Crystal modification of phenytoin with polyethylene glycol for improving mechanical strength, dissolution rate and bioavailability by a spherical crystallization technique. Chem. Pharm. Bull. 1986, 34(8), 3376-3383.
Pawar, A. P.; Paradkar, A. R.; Kadam, S. S.; Mahadik, K. R. Crystallo-co-agglomeration: A novel technique to obtain ibuprofen-paracetamol agglomerates. AAPS PharmSciTech. 2004, 5(3), 57-64.
Thati, J.; Rasmuson, Å. C. On the mechanisms of formation of spherical agglomerates. Eur. J. Pharm. Sci. 2011, 42(4), 365-379.
Amaro-González, D., Biscans, B. Spherical agglomeration during crystallization of an active pharmaceutical ingredient. Powder Technol. 2002, 128(2-3), 188-194.
Thati, J.; Rasmuson, Å. C. Particle engineering of benzoic acid by spherical agglomeration. Eur. J. Pharm. Sci. 2012, 45(5), 657-667.
Blandin, A. F.; Mangin, D.; Rivoire, A.; Klein, J. P.; Bossoutrot, J. M. Agglomeration in suspension of salicylic acid fine particles: Influence of some process parameters on kinetics and agglomerate final size. Powder Technol. 2003, 130(1-3), 316-323.
Kulkarni, P. K.; Dixit M.; Jain A. Spherical agglomeration of naproxan by solvent change method. S. J. Pharm. Sci. 2011, 4(1), 1-8.
Maghsoodi, M. Effect of process variable on physicomechanical properties of the agglomerates obtained by spherical crystallization technique. Pharm. Dev. Technol. 2011, 16(5), 474-482.
Subero-Couroyera, C.; Mangina, D.; Rivoireb, A.; Blandinc, A. F.; Kleina, J. P. Agglomeration in suspension of salicylic acid fine particles: Analysis of the wetting period and effect of the binder injection mode on the final agglomerate size. Powder Technol. 2006, 161(2), 98-109.
Kawashima, Y.; Kurachi, Y.; Takenaka, H. Preparation of spherical wax matrices of sulfamethoxazole by wet spherical agglomeration technique using a CMSMPR agglomerator. Powder Technol. 1982, 32(2), 155-161.
Maghsoodi, M.; Yari, Z. Effect of temperature on wet agglomeration of crystals. Iran J. Basic Med. Sci. 2014, 17(5), 344-350.

Chapter 3
Zhang, H.; Xu, X.; Mu, H.; Nilsson, J.; Adler-Nissen, J. Lipozyme IM-catalyzed interesterification for the production of margarine fats in a 1 kg scale stirred tank reactor. Eur. J. Lipid Sci. Technol. 2000, 102(6), 411-418.
Blandin, A. F.; Mangin, D.; Subero-Couroyer, C.; Rivoire, A.; Klein, J. P.; Bossoutrot, J. M. Modelling of agglomeration in suspension: Application to salicylic acid microparticles. Powder Technol. 2005, 156(1), 19-33.
Kawashima, Y.; Cui, F.; Takeuchi, H.; Niwa, T.; Hino, T.; Kiuchi, K. Improvements in flowability and compressibility of pharmaceutical crystals for direct tabletting by spherical crystallization with a two-solvent system. Powder Technol. 1994, 78(2), 151-157.
Bos, A. S.; Zuiderweg, F. J. Size of agglomerates in batch wise suspension agglomeration. Chem. Eng. Res. Des. 1987, 65(2), 187-194.
Kawashima, Y.; Capes, C. E. Experimental study of the kinetics of spherical agglomeration in as stirred vessel. Powder Technol. 1974, 10(1-2), 85-92.
Couper, J. R.; Penney, W. R.; Fair, J. R.; Walas, S. M. Chemical process equipment: Selection and design. 3rd Ed.; Elsevier Inc., Waltham, 2012; Chapter 10, pp. 277-327.
Uhl, V. W.; Gray, J. B. Mixing, theory and practice. Academic Press, New York, 1966; Chapter 3, pp. 112-176.
Myers, K. J.; Reeder, M. F.; Fasano, J. B. Optimize mixing by using the proper baffles CEP February 2002, pp. 42-47. http://people.clarkson.edu/~wwilcox/Design/mixopt.pdf
McCabe, W. L.; Smith, J. C.; Harriott, P. Unit operations of chemical engineering. 7th Ed.; McGraw-Hill Inc., New York, 2005; Chapter 9, pp. 244-293.
Zweitering, Th. N. Suspension of solid particles in liquids by agitators. Chem. Eng. Sci. 1958, 8(3-4), pp. 244-253.
Threlfall, T. L. Analysis of organic polymorphs: A review. Analyst. 1995, 120(10), 2435-2460.
Yu, L.; Reutzil, S. M.; Stephenson, G. A. Physical characterization of polymorphic drugs: An integrated characterization strategy. PSTT 1998, 1(3), 118-127.
Grant, D. J. W. Polymorphism in pharmaceutical solids. 2nd Ed.; Marcel Dekker Inc., New York, 1999; Chapter 1, pp. 1-33.
Lee, T.; Lin, M. S. Sublimation point depression of tris (8-hydroxyquinoline) aluminum (III) (Alq3) by crystal engineering. Cryst. Growth Des. 2007, 7(9), 1803-1810.
Nichols, G.; Frampton, C. S. Physicochemical characterization of the orthorhombic polymorph of paracetamol crystallized from solution. J. Pharm. Sci. 1998, 87(6), 684-693.
Giron, D. Thermal analysis and calorimetric methods in the characterization of polymorphs and solvates. Thermochim. Acta 1995, 248(2), 1-59.
El-Khateeb, S. Z.; Amer, S. M.; Razek, S. A. A.; Amer, M. M. Stability-indicating methods for the determination of cimetidine using derivative and fourier-transform infrared spectrophotometry Spectro. Lett. 1998, 31(7), 1415-1429.
Cölle, M.; Gmeiner, J.; Milius, W.; Hillebrecht, H.; Brütting, W. Preparation and characterization of blue-luminescent tris(8-hydroxyquinoline)-aluminum (Alq3). Adv. Funct. Mater. 2003, 13(2), 108-112.
Lee, T.; Hsu, F. B. A cross-performance relationship between Carr′s index and dissolution rate constant: The study of acetaminophen batches. Drug Dev. Ind. Pharm. 2007, 33(11), 1273-1284.
Lee, T.; Su, Y. C.; Hou, H. J.; Hsieh, H. Y. Spherical crystallization for lean solid-dose manufacturing (Part I). Pharm. Technol. 2010, 34(4), 72-75.
Thati, J.; Rasmuson, Å. C. On the mechanisms of formation of spherical agglomerates. Eur. J. Pharm. Sci. 2011, 42(4), 365-379.
Grey, R. O.; Beddow, J. K. On the Hausner ratio and its relationship to some properties of metal powders. Powder Technol. 1969, 2(6), 323-326.
Chikhale, E. Clinical pharmacology and biopharmaceutics review. Center for Drug Evaluation and Research, Food and Drug Administration 2012 February. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/204063Orig1s000ClinPharmR.pdf
Rouessac, F.; Rouessac, A. Infrared Apectroscopy. 1st Ed.; John Willy & Sons, Chichester, 2001; Chapter 10, pp. 170-173.
Giron, D. Applications of thermal analysis and coupled techniques in pharmaceutical industry. J. Therm. Anal. Calorim. 2001, 68(2), 335-357.
Giron, D. Thermal analysis and calorimetric methods in the characterization of polymorphs and solvates. Thermochim. Acta 1995, 248(2), 1-59.
Gotoh, K.; Masuda, H.; Higashitani, K. Powder technology hand book. 2nd Ed.; Marcel Dekker Inc., New York, 1997; Chapter 5, pp. 720-730.
Gotoh, K.; Masuda, H.; Higashitani, K. Powder Technology Hand Book. 2nd Ed.; Marcel dekker Inc., New York, 1997; Chapter 3, pp. 413-423.
Braatz, R. D.; Fujiwara, M.; Ma, D. L.; Togkalidou, T. Simulation and new sensor technologies for industrial crystallization: A review. Int. J. Mod. Phys. 2002, 16(346), 346-353.
Rasenack, N.; Müller, B. W. Crystal habit and tableting behavior. Int. J. Pharm. 2002, 244(1-2), 45-57.
Skoog, D. A.; Holler, F. J.; Nieman, T. A. Principles of instrumental analysis. 5th Ed.; Thomson Learning, Mississippi, 2001; Chapter 21, pp. 549-553.
Reed-hill, R. E. Physical metallurgy principles. 3rd Ed.; PWS Publishing Company, Boston, 1994; Chapter 2, pp. 53-60.
Chow, A. H. L.; Leung, M. W. M. A study of the mechanisms of wet spherical agglomeration of pharmaceutical powders. Drug Dev. Ind. Pharm. 1996, 22(4), 357-371.
Blandin, A. F.; Mangin, D.; Rivoire, A.; Klein, J. P.; Bossoutrot, J. M. Agglomeration in suspension of salicylic acid fine particles: Influence of some process parameters on kinetics and agglomerate final size. Powder Technol. 2003, 130(1-3), 316-323.
Bharti, N.; Bhandari, N.; Sharma, P.; Singh, K.; Kumar, A. Spherical crystallization: A novel drug delivery approach. Asian J. Biomed. Pharm. Sci. 2013, 3(18), 10-16.
Farid, M.; El-Setouhy, D.; El-Bayomi, T.; El-Nabarawi, M. Pharmaceutical overview of spherical crystallization as an up to date method to enhance the solubility and bioavailability of poorly water-soluble drugs. IJUPBS 2014, 3(1), 225-244.
Smith, G. W.; Tavlarides, L. L.; Placek, J. Turbulent flow in stirred tanks: Scale-up computations for vessel hydrodynamics. Chem. Eng. Comm. 1990, 93(1), 49-73.
Maghsoodi, M. Effect of process variable on physicomechanical properties of the agglomerates obtained by spherical crystallization technique. Pharm. Dev. Technol. 2011, 16(5), 474-482.

指導教授 李度(Tu Lee) 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明