博碩士論文 102324020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:54.145.38.157
姓名 林思吟(Ssu-Yin Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用次微米球建構具機械性質之光子晶體薄膜
(The formation of photonic crystals film with mechanical properties by submicrospheres)
相關論文
★ 快速合成具核殼結構之均ㄧ粒徑次微米球與其表面改質之特性研究★ 高效率染料敏化太陽能電池及製備次模組元件之研究
★ 利用核殼結構次微米球建構具耐溶劑性質及機械性質之光子晶體膜★ 電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究
★ 同時聚合下製備聚苯乙烯/矽膠高分子混成體★ 甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究
★ 含水溶性藥物之乙基纖維素微膠囊的製備★ 銅箔基板環氧樹脂含浸液之研究
★ 含光敏感單體之甲基丙烯酸酯系列正型光阻之製備★ 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究
★ 均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子★ 溶膠-凝膠法製備環氧樹脂/二氧化矽有機無機混成體
★ 溶膠-凝膠法製備相轉移材料微膠囊★ 親疏水性光阻製備
★ 奈米多孔性材料之製備★ 分子拓印高分子之製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用無乳化劑乳化聚合法於沸騰環境下,製備均一粒徑之自交聯次微米球,並將此次微米球建構具機械性質之光子晶體薄膜。藉由添加自交聯劑(SCA)於次微米球中,使次微米球上之官能性基團與鄰近球間發生自交聯反應而穩定光子晶體結晶結構,得到具機械性質之光子晶體薄膜。
  高玻璃轉移溫度之P(St-co-SCA)、P(St-co-MAA)/P(St-co-SCA)次微米球之研究中,由於SAC透過自交聯反應,仍無法提供球與球之間連結作用力,使光子晶體薄膜不具機械性質。
  另一方面,為了提升光子晶體薄膜之機械性質,製備具低玻璃轉移溫度之P(BMA-co-SCA)、P(BMA-co-MAA)/P(BMA-co-SCA)及P(BA-co-MAA)/P(BA-co-SCA)次微米球。此一系列具低玻璃轉移溫度之次微米球透過自組裝程序,可得到具機械性質之光子晶體薄膜。
摘要(英) In this study, monodisperse self-crosslinking submicrospheres were prepared by soap-free emulsion polymerization at boiling state. The self-crosslinking submicrospheres were prepared by self-crosslinking agent (SAC) in the submicrospheres.
  P(St-co-SCA) and P(St-co-MAA) /P(St-co-SCA) submicrospheres were prepared. But photonic crystals film with mechanical property wasn’t obtained by these self-crosslinking submicrospheres.
  On the other hand, photonic crystals film with the mechanical property were obtained by using P(BMA-co-SCA), P(BMA-co-MAA)/P(BMA-co-SCA) and P(BA-co-MAA)/P(BA-co-SCA) submicrospheres.
關鍵字(中) ★ 光子晶體
★ 機械性質
★ 次微米球
★ 無乳化劑乳化聚合法
關鍵字(英)
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
第二章 實驗 6
2.1. 實驗藥品 6
2.2. 實驗儀器 8
2.3. 實驗方法 9
2.3.1. 單體精製 9
2.3.2. 快速製備均一粒徑次微米球 9
2.3.3. 一階段法製備自交聯次微米球 10
2.3.4. 二階段法製備自交聯次微米球 11
2.3.5. 光子晶體之製備 12
2.4. 儀器分析測試條件 12
2.4.1. 傅立葉轉換紅外線光譜儀(FTIR) 12
2.4.2. 掃描式電子顯微鏡(SEM) 12
2.4.3. 動態粒徑分析儀(DLS) 12
2.4.4. 紫外光-可見光光譜儀(UV-Vis Spectroscopy) 13
2.4.5. 微差掃描分析儀(DSC) 13
2.4.6. 萬能拉伸試驗機(United Universal Testing Machine) 13
2.4.7. 鉛筆硬度計(Industrial Pencil Test) 13
2.4.8. 折射率儀(Refractometer) 13
第三章 結果與討論 14
3.1. 一階段法製備P(St-co-NMA)次微米球之研究 14
3.1.1. P(St-co-NMA)之製備與鑑定 14
3.1.2. 光子晶體薄膜光學性質之研究 21
3.1.3. 光子晶體薄膜機械性質之研究 24
3.2. 二階段法製備P(St-co-MAA)/P(St-co-NMA)次微米球之研究 27
3.2.1. P(St-co-MAA)/P(St-co-NMA)之製備與鑑定 27
3.2.2. 光子晶體薄膜光學性質之研究 31
3.2.3. 光子晶體機械性質之研究質分析 34
3.3. 一階段法製備P(BMA-co-NMA)次微米球之研究 36
3.3.1 P(BMA-co-NMA)之製備與鑑定 36
3.3.2 光子晶體薄膜結構與光學性質之研究 38
3.3.3 光子晶體薄膜機械性質之研究 55
3.3.4 光子晶體薄膜耐溶劑性質之研究 58
3.4. 二階段法製備P(BMA-co-MAA)/P(BMA-co-NMA)次微米球之研究 63
3.4.1 P(BMA-co-MAA)/P(BMA-co-NMA)之製備與鑑定 63
3.4.2 光子晶體薄膜結構與光學特性之鑑定 65
3.4.3 光子晶體薄膜機械性質之鑑定 84
3.4.4 光子晶體薄膜耐溶劑性質之鑑定 87
3.5. 二階段法製備P(BA-co-MAA)/P(BA-co-NMA)次微米球之研究 91
3.5.1 P(BA-co-MAA)/P(BA-co-NMA)之製備與鑑定 91
3.5.2 光子晶體薄膜結構與光學性質之鑑定 93
3.5.3 光子晶體薄膜機械性質之鑑定 105
3.5.4 光子晶體薄膜耐溶劑性質之鑑定 110
3.5.5 光子晶體薄膜經熱處理後之鑑定 114
第四章 結論 119
第五章 參考文獻 121
參考文獻 1. T. Ellingsen, O. Aune, J. Ugelstad, and S Hagen. Monosized Stationary Phases for Chromatography. Journal of Chromatography 1990, 535:147-161.
2. Camli S.T, S. Senel, and A. Tuncel. Cibacron blue F3G-A-attached uniform and macroporous poly(styrene-co-divinylbenzene) particles for specific albumin adsorption. Journal of Biomaterials Science 1999, 10: 875-889.
3. D. G. Yu, J. H. An, J. Y. Bae, S. D. Ahn, S. Y. Kang, and K. S. Suh. Negatively Charged Ultrafine Black Particles of P(MMA-co-EGDMA) by Dispersion Polymerization for Electrophoretic Displays. Macromolecules 2005, 38: 7485-7491.
4. L. I. Kulin, P. Flodin, T. Ellingsen, J. Ugelstad. Monosized polymer particles in size-exclusion chromatography: I. Toluene as solvent. Journal of Chromatography 1990, 514:1-9.
5. B. Paredesa, S. Gonzáleza, M. Renduelesb, and J. M. Dı́az. Particulate poly(glycidyl methacrylate-co-ethylene dimethacrylate) material for protein separation by anion-exchange chromatography. Separation and Purification Technology 2004, 40:243-250.
6. D. C. Sherrington. Preparation, structure and morphology of polymer supports. Chemical Communications 1998, 21:2275-2286.
7. H. Ding, C. Liu, H. Gu, Y. Zhao, B. Wang, and Z. Gu. Responsive Colloidal Crystal for Spectrometer Grating. ACS Photonics 2014, 1:121-126.
8. J. Wang, L. Wang, Y. Song, and L. Jiang. Patterned photonic crystals fabricated by inkjet printing. Journal of Materials Chemistry C 2013, 1: 6048-6058.
9. B. Platzer, R.D. Klodt, B. Hamann, and K.D. Henkel. The influence of local flow conditions on the particle size distribution in an agitated vessel in the case of suspension polymerisation of styrene. Chemical Engineering and Processing 2005, 44:1228-1236.
10. H. Jung, K. Song, K. Lee, B.H. Lee, and S. Choe. Reaction and stabilizing mechanism of the cross-type macromonomers in the dispersion polymerization of styrene. Journal of Colloid and Interface Science 2007, 308:130-141.
11. J. W. Kim, and K. D. Suh. Monodisperse micron-sized polystyrene particles by seeded polymerization: effect of seed crosslinking on monomer swelling and particle morphology. Polymer 2000, 41:6181-6188.
12. K. Zhang, W. Wu, H. Meng, K. Guo, and J. F. Chen. Pickering emulsion polymerization: Preparation of polystyrene/nano-SiO2 composite microspheres with core-shell structure. Powder Technology 2009, 190:393-400.
13. T. Yamamoto, Y. Kanda, and K. Higashitani. Molecular-scale observation of formation of nuclei in soap-free polymerization of styrene. Langmuir 2004, 20:4400-4405.
14. T. Matsumoto, and A. Ochi. Polymerization of Styrene in Aqueous Solution. Kobunshi Kagaku 1965, 22:481-487.
15. Z. Z. Gu, H. Chen, S. Zhang, L. Sun, Z. Xie, and Y. Ge. Rapid synthesis of monodisperse polymer spheres for self-assembled photonic crystals. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2007, 302:312-319.
16. S. John. Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Physical Review Letters 1987, 58:2486-2489.
17. 17. E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters 1987, 58:2059-2062.
18. K. Liu, T.A. Schmedake, and R. Tsu. A comparative study of colloidal silica spheres: Photonic crystals versus Bragg′s law. Physics Letters A 2008, 372:4517-4520.
19. C. Lawrence, P. Vukusic, and R. Sambles. Grazing-incidence iridescence from a butterfly wing. Applied Optics 2002, 41:437-441.
20. S. Kinoshita, and S. Yoshioka. Structural Colors in Nature: The Role of Regularity and Irregularity in the Structure. ChemPhysChem 2005, 6:1442-1459.
21. E. A. Monroe, and S. E. Monroe. Origin of oridenscent colors on the indigo snake. Science 1967, 159:97-98.
22. G. Freymann, V. Kitaev, B. V. Lotschz, and G. A. Ozin. Bottom-up assembly of photonic crystals. Chemical Society Reviews 2013, 42:2528-2554.
23. A. J. Wang, S. L. Cheng, P. Dong, X. G. Cai, Q. Zhou, and G.M. Yuan. Fabrication of Colloidal Photonic Crystals with Heterostructure by Spin-Coating Method. Chinese Physics Letters 2009, 26: 024210.
24. Y.N. Xia, B. Gates, Y.D. Yin, Y. Lu. Monodispersed colloidal spheres: Old materials with new applications. Advanced Materials 2000, 12:693-713.
25. Z. Z. Gu, Q. B. Meng, S. Hayami, A. Fujishima, and O. Sato. Self-assembly of submicron particles between electrodes. Journal of Applied Physics 2001, 90:2042-2044.
26. Y. Lin, P. R. Herman, and W. Xu. In-fiber colloidal photonic crystals and the formed stop band in fiber longitudinal direction. Journal of Applied Physics 2007, 102:073106.
27. L. Cui, Y. Zhang, J. Wang, Y. Ren, Y. Song, and L. Jiang. Ultra-Fast Fabrication of Colloidal Photonic Crystals by Spray Coating. Macromolecular Rapid Communications 2009, 30:598-603.
28. H. S. Lee, T. S. Shim, H. Hwang, S. M. Yang, and S. H. Kim. Colloidal Photonic Crystals toward Structural Color Palettes for Security Materials. Chemistry of Materials 2013, 25:2684-2690.
29. R. Xuan, Q. Wu, Y. Yinb, and J. Ge. Magnetically assembled photonic crystal film for humidity sensing. Journal of Materials Chemistry 2011, 21:3672-3676.
30. F. Y. Lin, and L. P. Yu. Thiourea functionalized hydrogel photonic crystal sensor for Cd2+ detection. Analytical Methods 2012, 4:2838.
31. Y. Z. Li, T. Kunitake, and S. Fujikawa. Efficient fabrication of large, robust films of 3D-ordered polystyrene latex. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2006, 275:209-217.
32. B. Tang, C. Wu, T. Lin, S. Zhang. Heat-resistant PMMA photonic crystal films with bright structural color. Dyes and Pigments 2013, 99:1022-1028.
33. F. Piret, Y. U. Kwon, and B. L. Su. Silica colloidal crystals with uni- and multi-photonic bandgaps and controlled reflective properties. Chemical Physics Letters 2009, 472:207-211.
34. Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, and T. Shinohara. Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region. Langmuir 2003, 19:977-980.
35. H. Fudouzi, and T. Sawada. Photonic rubber sheets with tunable color by elastic deformation. Langmuir 2006, 22:1365-1368.
36. L. Duan, B. You, L. Wu, and M. Chen. Facile fabrication of mechanochromic-responsive colloidal crystal films. Journal of Colloid and Interface Science 2011, 353:163-168.
37. Z. Shen, L. Shi, B. You, L. Wu, and D. Zhao. Large-scale fabrication of three-dimensional ordered polymer films with strong structure colors and robust mechanical properties. Journal of Materials Chemistry 2012, 22:8069-8075.
38. Y. C. Kuo, Y. C. Lee, and H. Chen. Synthesis of photonic crystal film byself-assembly of core/shell poly(styrene)/poly(styrene-co-butyl methacrylate) submicrospheres. Journal of Thermoplastic Composite Materials 2014, 27:306-323.
39. C. G. Schäfer, C. Lederle, K. Zentel , B. Stühn, and M. Gallei. Utilizing stretch-tunable thermochromic elastomeric opal films as novel reversible switchable photonic materials. Macromolecular Rapid Communications 2014, 35:1852-1860.
40. C. G. Schäfer, T. Winter, S. Heidt, C. Dietz, T. Ding, J. J. Baumberg, and M. Gallei. Smart polymer inverse-opal photonic crystal films by melt-shear organization for hybrid core-shell architectures. Journal of Materials Chemistry C, 2015, 3:2204-2214.
41. Y. Chen, S. T. Jones, I. Hancox, R. Beanland, E. J. Tunnah, and S. A. F. Bon. Multiple hydrogen-bond array reinforced cellular polymer films from colloidal crystalline assemblies of soft latex particles. ACS Macro Letter 2012, 1:603-608.
42. C. G. Schäfer, B. Viel, G. P. Hellmann, M. Rehahn, and M. Gallei. Thermo-cross-linked elastomeric opal films. ACS Applied Materials & Interfaces 2013, 5:10623-10632.
43. J. Zhou, G. Wang, M. Marquez, and Z. Hu. The formation of crystalline hydrogel films by self-crosslinking microgels. Soft Matter 2009, 5:820-826.
44. J. Aguilar, M. Rabelero, E. Mendizábal, S. M. N. Donlucas, M. Arellano, J. E. Puig. Tensile properties of self-crosslinkable poly(n-butyl methacrylate-co-n-methylolacrylamide) films prepared by emulsion and microemulsion Latexes. Macromolecular Symposia 2009, 283-284:223-229.
45. L. L. Duan, B. You, L. M. Wu, and M. Chen. Facile fabrication of mechanochromic-responsive colloidal crystal film. Journal of Colloid and Interface Science 2011, 353:163-168.
46. 郭育丞,「快速合成均一粒徑功能性次微米球及其應用」,國立中央大學化學工程與材料工程學系博士論文,2010。
指導教授 陳暉 審核日期 2015-6-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明