博碩士論文 102324021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.116.36.192
姓名 陳志豪(Chih-Hao Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 新式低溫合金焊料之開發與界面反應探討及可靠度分析
(Development of Low Melting Solder Alloy and Analysis of Interfacial Reaction and Reliability)
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 電遷移對純錫導線晶粒旋轉之研究
★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究★ 鋁鍺薄膜封裝研究
★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長
★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究
★ 無鉛銲料與碲化鉍基材之界面反應研究★ 高摻雜之二氧化錫薄膜能隙窄化現象及氧化銦薄膜之應力量測與探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 因半導體科技日新月異,需開發如三維構裝、生物感測器、可撓性平面顯示器以及分子機械等,然而無論何種技術與概念都需透過電子構裝技術以產品化,因此電子構裝技術在未來的產業將扮演重角色。然而多元化的產品將對電子構裝技術帶來更大的挑戰,如高分子基板的低玻璃轉化溫度、生物元件的生物可耐溫度以及分子機械的分子裂解溫度,都嚴格的限制電子構裝的溫度,而現行的無鉛銲錫構裝溫度並不符合需求,因此發展新式的低溫銲料將至關重要。在本研究中提出Sn-In-Bi與In-Bi兩種低溫合金系統,在兩個系統中分別挑選三個具有合適熔點的成分組成。與Cu基板接合界面反應研究、推力測試以及電遷移用以評估六種銲料於應用上之合適性。16.5Sn-51In-32.5Bi、17Sn-26In-57Bi和53Sn-10In-37Bi 之熔點分別為56.30、82.14與106.21 oC。三種合金與Cu界面的介金屬化合物皆為Cu6(In, Sn)5;In-Bi之68In-32Bi熔點為75.80 oC,合金界面產生之介金屬化合物為CuIn2;50In-50Bi之熔點為95.72 oC合金界面所產生之介金屬化合物為Cu11In9;33In-67Bi之熔點為116.03 oC合金界面所產生之介金屬化合物為Cu2In。推力測試結果顯示,17Sn-26In-57Bi在Sn-In-Bi系統中有最好的剪應力,而於In-Bi系統中,50In-50Bi有最好的剪應力值,17Sn-26In-57Bi的剪應力值略高於50In-50Bi,但由破斷面可知17Sn-26In-57Bi在三次迴焊後具遠高於50In-50Bi合金之延性破裂比例,因此17Sn-26In-57Bi擁有最佳之推力性質。若上述兩種合金做成晶片以比較電遷移之抗性時,50In-50Bi的生存時間大約是17Sn-26In-57Bi的三倍。
摘要(英) Over the past several decades, devices and technologies that entail substrate applications have been widely developed for use in the semiconductor industry. Some new technologies are receiving a lot of attention from researchers, including three-dimensional integrated circuits (3D-IC), biosensors, flexible flat-panel displays, and molecular machinery. All of these new technologies require product assembly before they can become widely available. However, many obstacles must be overcome with respect to these assembling processes. One of the most important technological issues is the low thermal budget. The 200–300 °C temperatures used in conventional lead-free-solder assembling and manufacturing presents challenges to the functionality of these technologies. As such, it is necessary to develop low-melting solders with processing temperatures low enough for these innovative technologies to maintain their functionality during the soldering process. In this study, we investigated two low-melting alloy systems, Sn-In-Bi and In-Bi. In the Sn-In-Bi system, we used 16.5Sn-51In-32.5Bi, 17Sn-26In-57Bi, and 53Sn-10In-37Bi compositions with melting peak temperatures of 56.30 °C, 82.14 °C, and 106.21 °C, respectively. In the In-Bi system, we used 68In-32Bi, 50In-50Bi, and 33In-67Bi compositions with melting peak temperature of 75.80 °C, 95.72 °C, and 116.03 °C, respectively.
In this paper, we present the interfacial reaction on the Cu substrate for each alloy with different numbers of reflow cycles and temperatures. In the Sn-In-Bi system, we found the only intermetallic compound (IMC) formed at the interface to be Cu6(In, Sn)5, with different percentages for the In substitution. In the In-Bi system, we found the IMCs formed at the interfaces of 68In-32Bi/Cu, 50In-50Bi/Cu, and 33In-67Bi/Cu to be CuIn2, Cu11In9, and Cu2In, respectively. We found the growth rate of the Cu11In9 IMC formed between the 50In-50Bi alloy and Cu substrate to be quite slow. In addition, we used the shear test to analyze the reliability of these low-melting alloys. Our shear test results indicate that the 17Sn-26In-57Bi and 50In-50Bi alloys have the best shear strengths in the Sn-In-Bi and In-Bi systems, respectively. Compared with the shear strength results and fracture modes of the 17Sn-26In-57Bi and 50In-50Bi alloys, 17Sn-26In-57Bi exhibited a higher shear strength value and ductile fracture percentage than the 50In-50Bi alloy. We utilized samples made with the 17Sn-26In-57Bi and 50In-50Bi solders in an electromigration analysis and found the lifetimes of the 50In-50Bi samples to be around three times longer than those of 17Sn-26In-57Bi. However, compared with other low-melting alloys, 17Sn-26In-57Bi exhibits the best shear test results and 50In-50Bi the greatest electromigration resistivity.
關鍵字(中) ★ 低溫合金
★ 錫-銦-鉍
★ 銦-鉍
關鍵字(英) ★ Low melting alloy
★ Sn-In-Bi
★ In-Bi
論文目次
摘要 I
Abstract II
Contents IV
List of Figures VI
List of Tables IX
1. Introduction 1
1.1 Thermal issue of flexible electronics 4
1.2 Warpage issue of 3D-IC 6
1.3 Low-temperature solder alloys 9
1.3.1 Eutectic Sn-In solder 9
1.3.2 Sn-Bi solder 11
1.3.3 Sn-In-Bi solder 13
1.3.4 In-Bi solder 17
2. Motivation 19
3. Experimental 20
3.1 Alloys preparation 20
3.2 Reflow process and conditions 21
3.2.1 Interfacial reaction 21
3.2.2 Ball shear test 21
3.2.3 Electromigration test 22
3.3 Interfacial reaction analysis 23
3.4 Ball shear test analysis 23
3.5 Electromigration analysis 24
4. Results and Discussion 26
4.1 Thermal properties and melting point analysis 26
4.2 Interfacial reaction on Cu substrate 28
4.2.1 Interfacial reaction between 16.5Sn-51In-32.5Bi alloy and Cu 28
4.2.2 Interfacial reaction between 17Sn-26In-57Bi alloy and Cu 30
4.2.3 Interfacial reaction between 53Sn-10In-37Bi alloy and Cu 33
4.2.4 Interfacial reaction between 68In-32Bi alloy and Cu 36
4.2.5 Interfacial reaction between 50In-50Bi alloy and Cu 38
4.2.6 Interfacial reaction between 33In-67Bi alloy and Cu 42
4.3 Shear test on OSP Cu substrate 44
4.3.1 The shear test results of Sn-In-Bi system 46
4.3.2 The shear test results of In-Bi system 50
4.3.3 Comparing shear test results of 17Sn-26In-57Bi and 50In-50Bi 53
4.3.4 High-speed shear test on 17Sn-26In-57Bi and 50In-50Bi alloys 59
60
4.4 Electromigration test 62
4.4.1 The microstructure evolution of 17Sn-26In-57Bi under electromigration 66
4.4.2 The microstructure evolution of 50In-50Bi during electromigration 72
5. Conclusions 75
Reference 78
參考文獻

[1] Sazonov, A., Striakhilev, D., Lee, C. H., & Nathan, A. (2005). Low-temperature materials and thin film transistors for flexible electronics. Proceedings of the IEEE, 93(8), 1420-1428.
[2] David Su, “Application of synchrotron-based analytical techniques at TSMC,” 22nd NSRRC users’ meeting and workshop, workshop III, III4, 2016
[3] Tu, K. N., & Tian, T. (2013). Metallurgical challenges in microelectronic 3D IC packaging technology for future consumer electronic products. Science China Technological Sciences, 56(7), 1740-1748.
[4] Tu, K. N. (2011). Reliability challenges in 3D IC packaging technology. Microelectronics Reliability, 51(3), 517-523.
[5] Kim, Y., Kang, S. K., Kim, S. D., & Kim, S. E. (2012). Wafer warpage analysis of stacked wafers for 3D integration. Microelectronic Engineering, 89, 46-49.
[6] Wu, A. T., Tsai, C. Y., Kao, C. L., Shih, M. K., Lai, Y. S., Lee, H. Y., & Ku, C. S. (2009). In Situ Measurements of Thermal and Electrical Effects of Strain in Flip-Chip Silicon Dies Using Synchrotron Radiation X-rays. Journal of Electronic Materials, 38(11), 2308-2313.
[7] Amagai, M. (1999). Characterization of chip scale packaging materials. Microelectronics Reliability, 39(9), 1365-1377.
[8] Guo, W., Zhang, H., Zhang, X., Liu, L., Peng, P., Zou, G., & Zhou, Y. N. (2017). Preparation of nanoparticle and nanowire mixed pastes and their low temperature sintering. Journal of Alloys and Compounds, 690, 86-94.
[9] Lee, H., Choi, K. S., Eom, Y. S., Bae, H. C., & Lee, J. H. (2016). Sn58Bi Solder Interconnection for Low-Temperature Flex-on-Flex Bonding. ETRI Journal, 38(6), 1163-1171.
[10] Chen, K., Tamura, N., Tang, W., Kunz, M., Chou, Y. C., Tu, K. N., & Lai, Y. S. (2010). High precision thermal stress study on flip chips by synchrotron polychromatic x-ray microdiffraction. Journal of Applied Physics, 107(6), 063502.
[11] Chen, K., Tamura, N., Kunz, M., Tu, K. N., & Lai, Y. S. (2009). In situ measurement of electromigration-induced transient stress in Pb-free Sn–Cu solder joints by synchrotron radiation based x-ray polychromatic microdiffraction. Journal of Applied Physics, 106(2), 023502.
[12] Hsu, H. H., Chiu, T. C., Chang, T. C., Huang, S. Y., Lee, H. Y., Ku, C. S., & Huang, Y. T. (2014). Evaluation of strain measurement in a die-to-interposer chip using in situ synchrotron X-ray diffraction and finite-element analysis. Journal of Electronic Materials, 43(1), 52.
[13] Tian, F. F., & Liu, Z. Q. (2013, August). The interfacial microstructure and Kirkendall voids in In-48Sn/Cu solder joint. In Electronic Packaging Technology (ICEPT), 2013 14th International Conference on (pp. 907-910). IEEE.
[14] Kim, D. G., & Jung, S. B. (2005). Interfacial reactions and growth kinetics for intermetallic compound layer between In–48Sn solder and bare Cu substrate. Journal of Alloys and Compounds, 386(1), 151-156.
[15] Sommadossi, S., Gust, W., & Mittemeijer, E. J. (2003). Characterization of the reaction process in diffusion-soldered Cu/In–48 at.% Sn/Cu joints. Materials Chemistry and Physics, 77(3), 924-929.
[16] Tian, F., Liu, Z. Q., Shang, P. J., & Guo, J. (2014). Phase identification on the intermetallic compound formed between eutectic SnIn solder and single crystalline Cu substrate. Journal of Alloys and Compounds, 591, 351-355.
[17] Young, B. L., & Duh, J. G. (2001). Interfacial reaction and microstructural evolution for electroplated Ni and electroless Ni in the under bump metallurgy with 42Sn58Bi solder during annealing. Journal of Electronic Materials, 30(7), 878-884.
[18] Li, J., Mannan, S. H., Clode, M. P., Liu, C., Chen, K., Whalley, D. C., & Conway, P. P. (2008). Interfacial reaction between molten Sn-Bi based solders and electroless Ni-P coatings for liquid solder interconnects. IEEE Transactions on Components and Packaging Technologies, 31(3), 574-585.
[19] Shang, P. J., Liu, Z. Q., Li, D. X., & Shang, J. K. (2008). Bi-induced voids at the Cu 3 Sn/Cu interface in eutectic SnBi/Cu solder joints. Scripta Materialia, 58(5), 409-412.
[20] Poon, N. M., Wu, C. L., Lai, J. K., & Chan, Y. C. (2000). Residual shear strength of Sn-Ag and Sn-Bi lead-free SMT joints after thermal shock. IEEE Transactions on Advanced Packaging, 23(4), 708-714.
[21] Lee, J. I., Chen, S. W., Chang, H. Y., & Chen, C. M. (2003). Reactive wetting between molten Sn-Bi and Ni substrate. Journal of Electronic Materials, 32(3), 117-122.
[22] Wu, A. T., & Sun, K. H. (2009). Determination of average failure time and microstructural analysis of Sn-Ag-Bi-In solder under electromigration. Journal of Electronic Materials, 38(12), 2780-2785.
[23] Yeh, M. S. (2003). Effects of indium on the mechanical properties of ternary Sn-In-Ag solders. Metallurgical and Materials Transactions A, 34(2), 361-365.
[24] Kim, K. S., Imanishi, T., Suganuma, K., Ueshima, M., & Kato, R. (2007). Properties of low temperature Sn–Ag–Bi–In solder systems. Microelectronics Reliability, 47(7), 1113-1119.
[25] Wu, A. T., Chen, M. H., & Siao, C. N. (2009). The effects of solid-state aging on the intermetallic compounds of Sn-Ag-Bi-In solders on Cu substrates. Journal of Electronic Materials, 38(2), 252-256.
[26] Chiang, Y. Y., Cheng, R., & Wu, A. T. (2010). Effects on undercooling and interfacial reactions with Cu substrates of adding Bi and In to Sn-3Ag solder. Journal of Electronic Materials, 39(11), 2397-2402.
[27] Zeng, K., Stierman, R., Chiu, T. C., Edwards, D., Ano, K., & Tu, K. N. (2005). Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability. Journal of Applied Physics, 97(2), 024508.
[28] Shang, P. J., Liu, Z. Q., Li, D. X., & Shang, J. K. (2011). Intermetallic compound identification and Kirkendall void formation in eutectic SnIn/Cu solder joint during solid-state aging. Philosophical Magazine Letters, 91(6), 410-417.
[29] Mousavi, T., Aksoy, C., Grovenor, C. R. M., & Speller, S. C. (2015). Microstructure and superconducting properties of Sn–In and Sn–In–Bi alloys as Pb-free superconducting solders. Superconductor Science and Technology, 29(1), 015012.
[30] Chevalier, P. Y. (1988). A thermodynamic evaluation of the Bi-In system. Calphad, 12(4), 383-391.
[31] Crone, B., Dodabalapur, A., Lin, Y. Y., & Filas, R. W. (2000). Large-scale complementary integrated circuits based on organic transistors. Nature, 403(6769), 521.
[32] Hu, A., Guo, J. Y., Alarifi, H., Patane, G., Zhou, Y., Compagnini, G., & Xu, C. X. (2010). Low temperature sintering of Ag nanoparticles for flexible electronics packaging. Applied Physics Letters, 97(15), 153117.
[33] Sazonov, A., Striakhilev, D., Lee, C. H., & Nathan, A. (2005). Low-temperature materials and thin film transistors for flexible electronics. Proceedings of the IEEE, 93(8), 1420-1428.
[34] Mei, Z., Holder, H. A., & Vander Plas, H. A. (1996). Low-temperature solders. Hewlett Packard Journal, 47, 91-98.
[35] William D. Callister, “Materials Science and Engineering: an Introduction” Wiley Asia Seventh Edition
[36] Kang, S. K., Cho, M. G., Lauro, P., & Shih, D. Y. (2007). Study of the undercooling of Pb-free, flip-chip solder bumps and in situ observation of solidification process. Journal of Materials Research, 22(3), 557-560.
[37] Wang, D., Yuan, Y., & Luo, L. (2011). Indium addition on intermetallic compound evolution in tin-silver solder bump. Materials Transactions, 52(7), 1522-1524.
[38] Keppner, W., Wesche, R., Klas, T., Voigt, J., & Schatz, G. (1986). Studies of compound formation at Cu-In, Ag-In and Au-In interfaces with perturbed γ-γ angular correlations. Thin Solid Films, 143(2), 201-215.
[39] Tian, F., Liu, Z. Q., & Guo, J. (2014). Phase transformation between Cu (In, Sn) 2 and Cu2 (In, Sn) compounds formed on single crystalline Cu substrate during solid state aging. Journal of Applied Physics, 115(4), 043520.
[40] Nakano, T., Suzuki, T., Ohnuki, N., & Baba, S. (1998). Alloying and electrical properties of evaporated Cu–In bilayer thin films. Thin Solid Films, 334(1), 192-195.
[41] Yu, C. L., Wang, S. S., & Chuang, T. H. (2002). Intermetallic compounds formed at the interface between liquid indium and copper substrates. Journal of Electronic Materials, 31(5), 488-493.
[42] Lee, S. M., Yoon, J. W., & Jung, S. B. (2015). Interfacial reaction and mechanical properties between low melting temperature Sn–58Bi solder and various surface finishes during reflow reactions. Journal of Materials Science: Materials in Electronics, 26(3), 1649-1660.
[43] Myung, W. R., Kim, Y., & Jung, S. B. (2014). Mechanical property of the epoxy-contained Sn–58Bi solder with OSP surface finish. Journal of Alloys and Compounds, 615, S411-S417.
[44] Koo, J. M., & Jung, S. B. (2007). Effect of surface finish of substrate on mechanical reliability of In-48Sn solder joints in MOEMS package. Microsystem Technologies, 13(11-12), 1567-1573.
[45] Kim, J. W., Lee, Y. C., Ha, S. S., & Jung, S. B. (2009). Failure behaviors of BGA solder joints under various loading conditions of high-speed shear test. Journal of Materials Science: Materials in Electronics, 20(1), 17-24.
[46] Kim, Y. S., Kim, K. S., Hwang, C. W., & Suganuma, K. (2003). Effect of composition and cooling rate on microstructure and tensile properties of Sn–Zn–Bi alloys. Journal of Alloys and Compounds, 352(1), 237-245.
[47] El-Daly, A. A., Swilem, Y., Makled, M. H., El-Shaarawy, M. G., & Abdraboh, A. M. (2009). Thermal and mechanical properties of Sn–Zn–Bi lead-free solder alloys. Journal of Alloys and Compounds, 484(1), 134-142.
[48] Cho, I., Ahn, J. H., Yoon, J. W., Shin, Y. E., & Jung, S. B. (2012). Mechanical strength and fracture mode transition of Sn-58Bi epoxy solder joints under high-speed shear test. Journal of Materials Science: Materials in Electronics, 23(8), 1515-1520.
[49] Ha, S. S., Jang, J. K., Ha, S. O., Kim, J. W., Yoon, J. W., Kim, B. W., & Jung, S. B. (2009). Mechanical property evaluation of Sn-3.0 A-0.5 Cu BGA solder joints using high-speed ball shear test. Journal of Electronic Materials, 38(12), 2489.
[50] Kim, J. W., & Jung, S. B. (2010). Failure mechanism of Pb-bearing and Pb-free solder joints under high-speed shear loading. Metals and Materials International, 16(1), 7-12.
[51] Previti, M. A., Holtzer, M., & Hunsinger, T. (2011). Four ways to reduce voids in bga/csp package to substrate connections. In Proceedings of SMTA China East Conference (pp. 12-13).
[52] O′Hara, W. B., & Lee, N. C. (1995). Voiding in BGAs. Soldering & Surface Mount Technology, 7(3), 44-48.
[53] Choi, W. J., Yeh, E. C. C., & Tu, K. N. (2003). Mean-time-to-failure study of flip chip solder joints on Cu/Ni (V)/Al thin-film under-bump-metallization. Journal of Applied Physics, 94(9), 5665-5671.
[54] Chen, C. M., Chen, L. T., & Lin, Y. S. (2007). Electromigration-induced Bi segregation in eutectic SnBi solder joint. Journal of Electronic Materials, 36(2), 168-172.
[55] Liang, S. B., Ke, C. B., Ma, W. J., Zhou, M. B., & Zhang, X. P. (2016, May). Phase field simulation of segregation of the Bi-riched phase in Cu/Sn-Bi/Cu solder interconnects under electric current stressing. In Electronic Components and Technology Conference (ECTC), 2016 IEEE 66th (pp. 264-270). IEEE.
[56] Qin, H. B., Yue, W., Ke, C. B., Zhou, M. B., Zhang, X. P., & Li, B. (2014, August). Interaction effect between electromigration and microstructure evolution in BGA structure Cu/Sn-58Bi/Cu solder interconnects. In Electronic Packaging Technology (ICEPT), 2014 15th International Conference on (pp. 587-591). IEEE.
[57] Reddy, K. V., & Prasad, J. J. B. (1984). Electromigration in indium thin films. Journal of Applied Physics, 55(6), 1546-1550.
[58] Neils, W. K., Chromik, R. R., Dreyer, K. F., Grosman, D., & Cotts, E. J. (1995). Calorimetric study of the energetics and kinetics of interdiffusion in Cu/Cu6Sn5 thin film diffusion couples. MRS Online Proceedings Library Archive, 398.
[59] Zhang, Q., Zou, H., & Zhang, Z. F. (2010). Improving tensile and fatigue properties of Sn–58Bi/Cu solder joints through alloying substrate. Journal of Materials Research, 25(2), 303-314.
[60] Wu, W. H., Chung, H. L., Chen, C. N., & Ho, C. E. (2009). The influence of current direction on the Cu-Ni cross-interaction in Cu/Sn/Ni diffusion couples. Journal of Electronic Materials, 38(12), 2563-2572.
[61] Chen, H. Y., Chen, C., & Tu, K. N. (2008). Failure induced by thermomigration of interstitial Cu in Pb-free flip chip solder joints. Applied Physics Letters, 93(12), 122103.
[62] Chen, H. Y., & Chen, C. (2011). Thermomigration of Cu–Sn and Ni–Sn intermetallic compounds during electromigration in Pb-free SnAg solder joints. Journal of Materials Research, 26(8), 983-991.
[63] Zhao, N., Zhong, Y., Huang, M., & Ma, H. (2015, August). Interfacial reactions in Cu/Sn/Cu (Ni) systems during soldering under temperature gradient. In Electronic Packaging Technology (ICEPT), 2015 16th International Conference on (pp. 1263-1266). IEEE.
[64] Huang, M. L., Zhou, Q., Zhao, N., Liu, X. Y., & Zhang, Z. J. (2014). Reverse polarity effect and cross-solder interaction in Cu/Sn–9Zn/Ni interconnect during liquid–solid electromigration. Journal of Materials Science, 49(4), 1755-1763.
[65] Chang, C. W., Yang, S. C., Tu, C. T., & Kao, C. R. (2007). Cross-interaction between Ni and Cu across Sn layers with different thickness. Journal of Electronic Materials, 36(11), 1455-1461.
[66] Zhang, X. F., Guo, J. D., & Shang, J. K. (2007). Abnormal polarity effect of electromigration on intermetallic compound formation in Sn–9Zn solder interconnect. Scripta Materialia, 57(6), 513-516.
[67] Zhang, X. F., Guo, J. D., & Shang, J. K. (2008). Reverse polarity effect from effective charge disparity during electromigration in eutectic Sn–Zn solder interconnect. Journal of Materials Research, 23(12), 3370-3378.
[68] Huang, M. L., Zhang, Z. J., Zhao, N., & Zhou, Q. (2013). A synchrotron radiation real-time in situ imaging study on the reverse polarity effect in Cu/Sn–9Zn/Cu interconnect during liquid–solid electromigration. Scripta Materialia, 68(11), 853-856.
指導教授 吳子嘉(Albert T. Wu) 審核日期 2017-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明