博碩士論文 102324024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.231.212.98
姓名 邱茹慧(Ju-Hui Chiu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用Indolicidin衍生胜肽促進去氧寡核苷酸輸送
(The Use of Indolicidin-derived Peptides for Oligodeoxynucleotide Delivery)
相關論文
★ 利用穿膜胜肽改善帶正電高分子之轉染效率★ 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化
★ 以電刺激增進骨髓基質細胞骨分化之最佳化探討★ 利用電場控制導電性高分子以進行基因於聚電解質多層膜的組裝
★ 以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究★ 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染
★ 電場對於複合奈米絲進行原位基因傳送之影響★ 利用電場調控聚電解質多層膜的釋放 以應用於基因輸送
★ 發展載藥電紡聚乳酸/多壁奈米碳管/聚乙二醇纖維★ 利用寡聚精胺酸促進去氧寡核苷酸輸送
★ 利用聚己內酯/褐藻酸鈉之複合電紡絲擴增癌症幹細胞★ 以二元體形式之Indolicidin 應用於去氧寡核苷酸之輸送
★ Indolicidin之色胺酸殘基對於轉染效率的影響★ Indolicidin之二聚體形式對輸送去氧寡核?酸的影響
★ 搭建可提供電刺激與機械刺激之生物反應器★ 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究Indolicidin(IL)衍生胜肽對去氧寡核苷酸(Oligodeoxynucleotide, ODN)的輸送效果,其輸送模式可分為兩種:直接將胜肽與ODN座共價接合或是以接枝於分支型聚乙烯亞胺(branched polyethylenimine, bPEI)的方式形成陽離子載體。在直接結合的部份,所形成的胜肽-ODN接合物均具有良好的生物適合性,但是只有ILC、CIL、及R57F89C的接合物可以被送入細胞。而在胜肽接枝bPEI的載體研究中,藉由調控胜肽改質之bPEI與ODN的氮磷(N/P)比,使ODN能以靜電吸引力與胜肽改質的bPEI自組裝成複合粒子。當低N/P比時,負電的ODN吸附在聚陽離子上,因此粒子表面電位為負。粒子大小皆小於600nm,為胞吞作用可進行範圍。和未改質的bPEI相比,經由接枝IL衍生胜肽改質的載體可以提升生物相容性。螢光顯微鏡和流式細胞儀結果顯示,PEI-ILC和PEI-CIL可以促進細胞攝取ODN。雷射共軛焦顯微鏡結果顯示,PEI-ILC和PEI-CIL可以更進一步的使ODN進入細胞質。最後我們進行TNF-α的抑制實驗,結果顯示陽離子型高分子載體反而會刺激RAW264.7細胞產生TNF-α,而無法成功的使基因沉默,只有使用PEI-ILC以低的N/P比攜帶基因,可以明顯降低TNF-α的表達。綜合以上結果,我們認為PEI-ILC不只可以避免刺激RAW264.7細胞,並且可以使基因沉默,此載體有潛力作為基因治療應用。
摘要(英) Indolicidin (IL)-derived peptides were studied of their effects on oligodeoxynucleotide (ODN) delivery. These peptides were either directly conjugated to (ODN) or grafted to branched PEI (bPEI) as polycation carriers. The peptide-ODN conjugates demonstrated low cytotoxicities, however, only the conjugates using ILC, CIL, and R57F89C were translocated. For the grafted bPEI method, these vehicles were complexed with (ODN) in different N/P ratios to form self-assembled nanoparticles through electrostatic interaction. Negative zeta potentials of formed nanocomplexes were found when the N/P ratios were low, suggesting anionic ODNs were adsorbed on the surfaces of polycations. The diameters of nanoparticles were smaller than 600 nm which were suitable for endocytosis. Compared to non-modified bPEI, bPEI conjugated to IL-derived peptides demonstrated superior biocompatibility. Fluorescence microscope and flow cytometry results indicated that both PEI-ILC and PEI-CIL promoted ODN internalization. Images captured by confocal microscope revealed that PEI-ILC and PEI-CIL were capable of delivering ODN to cytosol of host cells. Finally, these gene vehicles were applied to inhibit TNF-α expression. Because RAW264.7 cells were sensitive to polycations, the ODN delivered by these vehicles did not result in gene silence. Instead, the levels of expressed TNF-α were highly elicited. Only PEI-ILC in low N/P (N/P 5) significantly reduced TNF-α. These results suggested that PEI-ILC not only avoided to stimulate RAW264.7 cells but also promoted gene silence, which should be a potential vehicle for gene therapy application.
關鍵字(中) ★ 聚乙烯亞胺
★ 胜肽
★ 去氧寡核苷酸
關鍵字(英) ★ polyethylenimine
★ peptide
★ oligodeoxynucleotide
論文目次 摘要 I

Abstract II

誌謝 III

目錄 IV

圖目錄 VII

表目錄 VIII

第一章 緒論 1

1-1 研究動機 1

1-2 實驗構想 2

第二章 文獻回顧 3

2-1 免疫失調 3

2-1-1 免疫系統 3

2-1-2 免疫失調疾病 4

2-1-3 治療方法 4

2-1-3-1 基因抑制藥物 5

2-2 基因治療 6

2-3 基因載體 7

2-3-1 病毒型載體 7

2-3-1-1 反轉錄病毒載體 7

2-3-1-2 腺病毒載體 8

2-3-1-3 腺聯病毒載體 8

2-3-2 非病毒型載體 9

2-3-2-1 基因槍及電穿孔 9

2-3-2-2 脂質體 10

2-3-2-3 陽離子型高分子 12

2-4 PEI對基因的輸送 14

2-4-1 直鏈型PEI 14

2-4-2 支鏈型PEI 15

2-4-3 胞吞作用 16

2-4-4 質子海綿效應 17

2-5 胜肽對基因的輸送 18

2-5-1 胜肽 18

2-5-1-1 細胞穿膜胜肽 18

2-5-1-2 抗菌胜肽 19

2-5-2 形成孔洞機制 20

2-5-3 胜肽使用策略 22

2-5-4 缺乏核內體逃脫 24

2-6 胜肽接枝PEI對基因的輸送 25

第三章 實驗材料、儀器與方法 26

3-1 實驗材料 26

3-1-1 合成材料 26

3-1-2 細胞培養 28

3-1-3 定性定量分析 29

3-2 實驗儀器 31

3-3 實驗方法 32

3-3-1 配製溶液 32

3-3-2 合成 33

3-3-2-1 Peptide-ODN conjugation 33

3-3-2-2 PEI-Peptide conjugation 34

3-3-3 NPs製備 35

3-3-4 粒徑大小與表面電位(DLS) 35

3-3-5 接枝率分析 36

3-3-5-1 TBNSA 36

3-3-5-2 DTNB 37

3-3-6 包覆率分析 38

3-3-7 轉染實驗 39

3-3-8 細胞存活率(MTS) 40

3-3-9 螢光顯微鏡(Fluorescent microscope) 40

3-3-10 流式細胞分析儀(Flow Cytometry) 41

3-3-11 雷射共軛焦顯微鏡(Confocal) 42

3-3-12 蛋白質抑制實驗(ELISA) 43

第四章 結果與討論 44

4-1 Peptide-ODN對於細胞存活率之影響 44

4-2 Peptide-ODN對細胞攝取的影響 45

4-3 PEI-peptide物性鑑定 47

4-3-1 表面電位 47

4-3-2 粒徑大小 49

4-3-3 TNBSA分析交聯劑接枝率 51

4-3-4 DTNB分析胜肽接枝率 52

4-3-5 PEI-peptide / ODN包覆率 54

4-4 PEI-peptide對於細胞存活率之影響 55

4-5 PEI-peptide對細胞攝取的影響 58

4-5-1 螢光顯微鏡分析細胞攝取量 58

4-5-2 流式細胞儀分析細胞攝取率 63

4-5-3 雷射共軛焦顯微鏡探討細胞攝取 64

4-6 PEI-peptide對蛋白質表現的影響 67

第五章 結論 69

第六章 參考文獻 70

參考文獻 1. Palladino MA, B.F., Theodorakis EA, Moldawer LL, Anti-TNF-alpha therapies: the next generation. Nat Rev Drug Discov, 2003. 2(9): p. 736-746.

2. Petros RA, D.J., Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010. 9: p. 615-627.

3. Ferber, D., GENE THERAPY:Safer and Virus-Free? Science 2001. 294: p. 1638-1642.

4. E. Tomlinson *, A.P.R., Controllable gene therapy Pharmaceutics of non-viral gene delivery systems Controlled Release, 1996. 39: p. 357-372.

5. Kilk K, E.-A.S., Järver P, Meikas A, Valkna A, Bartfai T, Kogerman P, Metsis M, Langel U., Evaluation of transportan 10 in PEI mediated plasmid delivery assay. J Control Release, 2005. 103: p. 511-523.

6. Mislick KA, B.J., Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc. Natl. Acad. Sci. USA, 1996. 93: p. 12349-12354.

7. Z.Y. Zhang, B.D.S., High-generation polycationic dendrimers are unusually effective at disrupting anionic vesicles: membrane bending model. Bioconjugate Chem, 2000. 11: p. 805-814.

8. Sergio H. Marshall, a.G.A., Antimicrobial peptides: A natural alternative to chemical antibiotics and a potential for applied biotechnology. Electronic Journal of Biotechnology, 2003. 6.

9. Tsai, B.-c., BIOACTIVITIES AND DIRECT TRANSMEMBRANE CHARACTERISTICS OF INDOLICIDIN AND ITS ANALOGUES. 2012.

10. Chiao-chun Yeh, W.-W.H., The use of short peptides conjugated PEI for gene delivery application. National Central University, 2013.

11. Abul K. Abbas MBBS , A.H.H.L.M.P., Shiv Pillai MBBS PhD Basic Immunology: Functions and Disorders of the Immune System, 4e Philadelphia, PA: Saunders Elsevier, 2012.

12. Bruce Alberts, A.J., Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter, Molecular Biology of the Cell, 4th edition. New York : Garland Science, 2002.

13. Openshaw, R.J.B.a.P.J., Pulmonary defences to acute respiratory infection. British Medical Bulletin, 2002. 61: p. 1-12.

14. Medzhitov, R., Recognition of microorganisms and activation of the immune response. Nature, 2007. 449: p. 819-826.

15. MS2, P.F., The innate and adaptive immune systems. University of California San Francisco.

16. Gabay, C.K., I, Mechanisms of disease: Acute-phase proteins and other systemic responses to inflammation. NEW ENGLAND JOURNAL OF MEDICINE, 1999. 340(6): p. 448-454.

17. Buchan G, B.K., Turner M, Chantry D, Maini RN, Feldmann M, Interleukin-1 and tumour necrosis factor mRNA expression in rheumatoid arthritis: prolonged production of IL-1 alpha. Clin. Exp. Immunol, 1988. 73(3): p. 449-455.

18. Mease PJ, G.B., Metz J, VanderStoep A, Finck B, Burge DJ., Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial. Lancet, 2000. 356: p. 385-390.

19. Feldmann M, M.R., Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol, 2001. 19: p. 163-196.

20. Health, D.o., Our inheritance, our future – realising the potential of genetics in the NHS. Genetics White Paper, 2003: p. chapter 1.25.

21. Verma, I.M., Gene Therapy: The Need for Basic Science. Molecular Therapy, 2000. 2: p. 531-531.

22. IM., V., Gene Therapy: The Need for Basic Science. Molecular Therapy, 2000. 2: p. 531-531.

23. 陳一村, 核糖核酸干擾術及其應用. biomedicine, 2008. 1(3).

24. Dong, L., et al., Targeting delivery oligonucleotide into macrophages by cationic polysaccharide from Bletilla striata successfully inhibited the expression of TNF-alpha. J Control Release, 2009. 134(3): p. 214-20.

25. Huang, Z., et al., Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunotherapy. J Control Release, 2012. 158(2): p. 286-92.

26. Kerstin B. Kaufmann, H.B.n., Anne Galy, Axel Schambach, Manuel Grez, Gene therapy on the move. EMBO Molecular Medicine, 2013. 5(1): p. 1642-1661.

27. Redberry, G., Gene silencing : new research. New York: Nova Science Publishers, 2006.

28. R. Kole, A.R.K., S. Altman, RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Rev. Drug Discov, 2012. 11: p. 125-140.

29. Crystal, R.G., Transfer of Genes to Humans: Early Lessons and Obstacles to Success. SCIENCE, 1995. 270: p. 404-410.

30. TONG-CHUAN HE*, S.Z., LUIS T. DA COSTA†, JIAN YU†, KENNETH W. KINZLER‡, AND BERT VOGELSTEIN*, A simplified system for generating recombinant adenoviruses. Medical Sciences, 1998. 95: p. 2509-2514.

31. Büning H1, P.L., Coutelle O, Quadt-Humme S, Hallek M., Recent developments in adeno-associated virus vector technology. J Gene Med, 2008. 7: p. 717-33.

32. Yla-Herttuala, S., Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol Ther, 2012. 20(10): p. 1831-2.

33. Ledley, F.D., Nonviral gene therapy: the promise of genes as pharmaceutical products. Gene Ther, 1995. 6: p. 1129-1144.

34. C.P. Lollo, M.G.B., H.C. Chiou, Obstacles and tissue-specific promotors [107,108] should enable the advances in non-viral gene delivery, Curr. Opin. Mol. Ther., 2000. 2: p. 136-142.

35. NING-SUN YANG*, J.B., BETH ROBERTS, BRIAN MARTINELL, AND DENNIS MCCABE, In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Genetics, 1990. 87: p. 9568-9572.

36. Chang, D.C., Chassy, B.M., and Saunders J.A. , Guide to electroporation and electrofusion. New York: Academic Press, 1992.

37. George Poste, D.P., William J. Vail, Chapter 4 Lipid Vesicles as Carriers for Introducing Biologically Active Materials into Cells. Methods in Cell Biology, 1976. 14: p. 33-71.

38. Dimitraidis, G.J., Introduction of ribonucleic acids into cells by means of liposomes. Nucleic Acids Res, 1978. 5(4): p. 1381-1386.

39. Anil B. Mukherjee*, S.O., Jean DeB. Butler*, Timothy Triche†, Peter Lalley†‡, and Joseph D. Schulman*, Entrapment of metaphase chromosomes into phospholipid vesicles (lipochromosomes): Carrier potential in gene transfer. Nail. Acad. Sci. USA, 1978. 75: p. 1361-1365.

40. Fraley RT, F.C., Kaplan S., Entrapment of a bacterial plasmid in phospholipid vesicles: potential for gene transfer. 76, 1979. Proc Natl Acad Sci U S A. : p. 3348-3352.

41. J.H. Felgner, R.K., C.N. Sridhar, C.J. Wheeler, Y.J. Tsai, R. Border, P. Ramsey, M. Martin, P.L. Felgner, Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations, J. Biol. Chem., 1994. 269: p. 2550-2561.

42. Simanek, M.A.M.a.E.E., Nonviral Vectors for Gene Delivery. Chem. Rev., 2009. 109: p. 259-302.

43. Xu Y, S.F.J., Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry., 1996. 18: p. 5616-23.

44. Hellstrand E, N.A., Topgaard D, Linse S, Sparr E., Membrane lipid co-aggregation with α-synuclein fibrils. PLoS One, 2013. 8(10): p. e77235.

45. A. V. Ulasov, Y.V.K., G. A. Trusov,A. A. Rosenkranz, E. D. Sverdlov and A. S. Sobolev, Properties of PEI-based Polyplex Nanoparticles That Correlate With Their Transfection Efficacy. Molecular Therapy 2011. 19: p. 103-112.

46. F. Nederberg, Y.Z., J. P. K. Tan, K. Xu, H. Wang, C. Yang, S. Gao, X. D. Guo, K. Fukushima, L. Li, J. L. Hedrick and Y.-Y. Yang, Biodegradable nanostructures with selective lysis of microbial membranes. NATURE CHEMISTRY, 2011. 3: p. 409-414.

47. X. Lu, Y.P., F. J. Xu, Z. H. Li, Q. Q. Wang, J. H. Chen, W. T. Yang, and G. P. Tang, Bifunctional Conjugates Comprising β-Cyclodextrin, Polyethylenimine, and 5-Fluoro-2′-Deoxyuridine for Drug Delivery and Gene Transfer. Bioconjugate Chem, 2010. 21: p. 1855-1863.

48. K. A. Howard, S.R.P., M. A. Behlke, F. Besenbacher, B. Deleuran and J. Kjems, Chitosan/siRNA Nanoparticle–mediated TNF-α Knockdown in Peritoneal Macrophages for Anti-inflammatory Treatment in a Murine Arthritis Model. 2008. 17: p. 162-168.

49. Jihoon Kim, Y.L., Kaushik Singha, Hyun Woo Kim, Jae Ho Shin, Seongbong Jo, Dong-Keun Han, and Won Jong Kim, NONOates–Polyethylenimine Hydrogel for Controlled Nitric Oxide Release and Cell Proliferation Modulation. Bioconjugate Chem, 2011. 22: p. 1031–1038.

50. J. H. Kim, P.-H.C., I. Y. Kim, K. T. Lim, H. M. Son, Y.-H. Choung, C.-S. Cho and J. H, Electrospun nanofibers composed of poly(ε-caprolactone) and polyethylenimine for tissue engineering applications. Materials Science and Engineering: C, 2009. 29(5): p. 1725-1731.

51. Li J, G.B., Meng Q, Yan Z, Gao H, Chen X, Yang X, Lu W., The use of myristic acid as a ligand of polyethylenimine/DNA nanoparticles for targeted gene therapy of glioblastoma. Nanotechnology, 2011. 22(43): p. 435101-435108.

52. Samal, S.K., et al., Cationic polymers and their therapeutic potential. Chem Soc Rev, 2012. 41(21): p. 7147-94.

53. T. Bieber, W.M., S. Kostin, A. Niemann, H.P. Elsasser., Intracellular route and transcriptional competence of polyethylenimine-DNA complexes, . Controll. Rel., 2002. 82 p. 441-454.

54. B. Brissault, A.K., Ch. Guis, Ch. Leborgne, O. Danos, H. Cheradame, , Synthesis of Linear Polyethylenimine Derivatives for DNA Transfection. Bioconjugate Chem, 2003. 14: p. 581-587.

55. U. Lungwitz, M.B., T. Blunk, A. Go¨pferich, Polyethylenimine-based non-viral gene delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2005. 60: p. 247-266.

56. C.R. Dick, G.E.H., Characterization of polyethylenimine. Macromol. Sci. Chem, 1970. 4: p. 1301-1314.

57. Ira Yudovin-Farber, Jacob Golenser, Nurit Beyth, Ervin I. Weiss, and Abraham J. Domb, Quaternary Ammonium Polyethyleneimine: Antibacterial Activity. Journal of Nanomaterials, 2010. 2010.

58. W.T. Godbey, K.K.W., A.G. Mikos Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. Biomed. Mater. Res, 1999. 45: p. 268-275.

59. Compbell, N.a.R., JB, Membrane structure and function. Biology 2002. CH8: p. 138-154.

60. Stefan Schütze, V.T.W.S.-B., Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nature Reviews Molecular Cell Biology, 2008. 9: p. 655-662.

61. Andre E. Nel, L.M., Darrell Velegol, Tian Xia1, Eric M. V. Hoek, Ponisseril Somasundaran, Fred Klaessig, Vince Castranova & Mike Thompson, Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials, 2009. 8: p. 543-557.

62. Heitz F1, M.M., Divita G., Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol., 2009. 157: p. 195-206.

63. Prochiantz, A., Protein and peptide transduction, twenty years later a happy birthday. Adv Drug Deliv Rev, 2008. 60(4-5): p. 448-51.

64. Frankel, A.D.P., C.O. , Cellular uptake of the Tat protein from human immunodeficiency virus. Cell, 1988. 55: p. 1189-1193.

65. Green, M.L., P.M., Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55: p. 1179-1188.

66. Helland DE1, W.J., Caputo A, Haseltine WA., Transcellular transactivation by the human immunodeficiency virus type 1 tat protein. J Virol, 1991. 65: p. 4547-4549.

67. Joliot, A.e.a., Identification of a signal sequence necessary for the unconventional secretion of Engrailed homeoprotein. Curr. Biol., 1998. 8: p. 856–863

68. Prochiantz2, A.J.A., Transduction peptides: from technology to physiology. Nature Cell Biology, 2004. 6: p. 189 - 196

69. Lee, S.H., B. Castagner, and J.C. Leroux, Is there a future for cell-penetrating peptides in oligonucleotide delivery? Eur J Pharm Biopharm, 2013. 85(1): p. 5-11.

70. Chan, D.I., E.J. Prenner, and H.J. Vogel, Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta, 2006. 1758(9): p. 1184-202.

71. Selsted ME1, N.M., Morris WL, Tang YQ, Smith W, Cullor JS., Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem., 1992. 267: p. 4292-5.

72. C. Subbalakshmi, V.K., R. Nagaraj, N. Sitaram, Requirements for antibacterial and hemolytic activities in the bovine neutrophil derived 13-residue peptide indolicidin. FEBS Letter, 1996. 395(1): p. 48-52.

73. Tsai, C.-W., Molecular Design of Less Hemolytic and Highly Antibacterial Indolicidin-Derived Peptides Assisted by Molecular Simulation and Fluorescence Analysis. 2010.

74. Brogden1, K.A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology, 2005. 3: p. 238-250.

75. Salomone, F., et al., A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape. J Control Release, 2012. 163(3): p. 293-303.

76. Jehangir S Wadia1, Radu V Stan2 & Steven F Dowdy1,2, Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nature Medicine 2004. 10: p. 310-315.

77. René Bartz , H.F., Jingtao Zhang , Nathalie Innocent , Craig Cherrin , Stephen C. Beck , Yi Pei , Aaron Momose , Vasant Jadhav , David M. Tellers , Fanyu Meng , Louis S. Crocker , Laura Sepp-Lorenzino , Stanley F. Barnett Effective siRNA delivery and target mRNA degradation using an amphipathic peptide to facilitate pH-dependent endosomal escape. Biochemical, 2011. 435: p. 475-487.

78. Fabrizio Salomonea, F.C., Mariagrazia Di Lucaa, Claudia Boccardib, Riccardo Nifosìa, Giuseppe Bardib, Lorenzo Di Baric, Michela Serresib, Fabio Beltrama, , A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape. Journal of Controlled Release, 2012. 163(3): p. 293-303.

79. Ya-Jung Lee, A.E.-O.a.J.-P.P.P., Delivery of Macromolecules into Live Cells by Simple Co-incubation with a Peptide. ChemBioChem, 2010. 11(3): p. 325-330.

80. Likun Fei, L.R., Jennica L. Zaro, and Wei-Chiang Shen, The influence of net charge and charge distribution on cellular uptake and cytosolic localization of arginine-rich peptides. J. Drug Target., 2011. 19: p. 675-680.

81. M.M. Fabani, C.A.-G., D. Williams, P.A. Lyons, A.G. Torres, K.G.C. Smith, A.J. Enright, M.J. Gait, E. Vigorito,, Efficient inhibition of miR-155 function in vivo by peptide nucleic acids. Nucl. Acids Res., 2010. 38: p. 4466-4475.

82. S. Abes, J.J.T., G.D. Ivanova, D. Owen, D. Williams, A. Arzumanov, P. Clair, M.J. Gait, B. Lebleu,, Efficient splicing correction by PNA conjugation to an R6-Penetratin delivery peptide Nucl. Acids Res., 2007. 35(13): p. 4495-4502.

83. El-Andaloussi, S.J., P. Johansson, H.J. Langel, Ü. , Cargo-dependent cytotoxicity and delivery efficacy of cell-penetrating peptides: A comparative study. 2007. 407(2): p. 285-292.

84. S. Deshayes, K.K., A. Rydstrom, L. Crombez, C. Godefroy, P.E. Milhiet, A. Thomas, R. Brasseur, G. Aldrian, F. Heitz, M.A. Munoz-Morris, J.M. Devoisselle, G. Divita,, Self-Assembling Peptide-Based Nanoparticles for siRNA Delivery in Primary Cell Lines. Small, 2012. 8(14): p. 2184-2188.

85. J.-M. Crowet, L.L., S. Deshayes, G. Divita, M. Morris, R. Brasseur, A. Thomas,, Modeling of non-covalent complexes of the cell-penetrating peptide CADY and its siRNA cargo,. Biochim. Biophys., 2013. 1828: p. 499-509.

86. R.H. Mo, J.L.Z., W.-C. Shen, Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy,. Mol. Pharm., 2012. 9 p. 299-309.

87. C. Zhang, N.T., X. Liu, W. Liang, W. Xu, V.P. Torchilin., SiRNA-containing liposomes modified with polyarginine effectively silence the targeted gene. J.Control.Release, 2006. 112: p. 229-239.

88. T. Shiraishi, P.E.N., Enhanced delivery of cell-penetrating peptidepeptide nucleic acid conjugates by endosomal disruption. . Nat. Protoc. , 2006. 1: p. 633-636.

89. Vanesa Sanza, C.T., Brigitte Soula, Emmanuel Flahautc, Helen M. Coley, S. Ravi P. Silva, Johnjoe McFadden, Chloroquine-enhanced gene delivery mediated by carbon nanotubes. Carbon, 2011. 49(15): p. 5348-5358.

90. Yamano, S., et al., Long-term efficient gene delivery using polyethylenimine with modified Tat peptide. Biomaterials, 2014. 35(5): p. 1705-15.

91. Ester J. Kwon, S.L., and Suzie H. Pun, A Truncated HGP Peptide Sequence That Retains Endosomolytic Activity and Improves Gene Delivery Efficiencies. MOLECULAR PHARMACEUTICS, 2010. 7(4): p. 1260-1265.

92. Parhiz H, H.M., Hatefi A, Shier WT, Farzad SA, Ramezani M., Molecular weight-dependent genetic information transfer with disulfide-linked polyethylenimine-based nonviral vectors. J Biomater Appl, 2013. 28(1): p. 112-124.

93. Hashemi M, P.B., Hatefi A, Ramezani M., Modified polyethyleneimine with histidine-lysine short peptides as gene carrier. Cancer Gene Ther., 2011. 18(1): p. 12-19.

94. S Moffatt, S.W.a.R.C., A multifunctional PEI-based cationic polyplex for enhanced systemic p53-mediated gene therapy. Gene Therapy, 2006. 13: p. 1512-1523.

95. Zaghloul EM, V.J., Zuber G, Smith CI, Lundin KE., Formulation and delivery of splice-correction antisense oligonucleotides by amino acid modified polyethylenimine. Mol Pharm, 2010. 7(3): p. 652-663.

96. Boeckle S, W.E., Ogris M., C- versus N-terminally linked melittin-polyethylenimine conjugates: the site of linkage strongly influences activity of DNA polyplexes. J Gene Med, 2005. 7(10): p. 1335-1347.

97. Li, J., et al., Hydrophobic oligopeptide-based star-block copolymers as unimolecular nanocarriers for poorly water-soluble drugs. Colloids Surf B Biointerfaces, 2013. 110: p. 183-90.

98. Zauner W, F.N., Haines AM., In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J Control Release, 2001. 71: p. 39-51.

99. Seong, J.H., et al., Polyethylenimine-based antisense oligodeoxynucleotides of IL-4 suppress the production of IL-4 in a murine model of airway inflammation. J Gene Med, 2006. 8(3): p. 314-23.

100. Myers, K.J., et al., Antisense oligonucleotide blockade of tumor necrosis factor-alpha in two murine models of colitis. J Pharmacol Exp Ther, 2003. 304(1): p. 411-24.

指導教授 胡威文(Wei-Wen Hu) 審核日期 2015-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明