博碩士論文 102324027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.145.186.6
姓名 黃怡雯(Yi-Wen Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 低溫還原氧化石墨烯薄膜
(Low-Temperature Reduction of Thin Graphene Oxide Film)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 抗氧化奈米銅粒子的製備及分析★ 柱狀自泳動粒子之擴散行為與沉降平衡
★ 過氧化氫的界面性質與穩定性★ 液橋分離與液面爬升物體之研究
★ 電潤濕動態行為探討★ 表面粗糙度對接觸角遲滯影響之效應
★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象★ 雙離子型磺基甜菜鹼基材之潤濕現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究是將市售的石墨片以電解剝落法製備微奈米級的石墨/石墨烯,再藉由電泳沉積法製備石墨烯薄膜於不鏽鋼片上。電泳沉積藉由電解剝落法所得到的氧化石墨/石墨烯奈米粒子因表面所帶的負電而穩定懸浮於溶液中,在經由施加一電場後使之沉積在正電極而形成薄膜。實驗中經由電解剝落法中的電解液選擇、粒子粒徑大小的過濾及電壓大小的調控得到一細緻且平整之石墨烯薄膜,其厚度約為1μm。另外本實驗也以蒸發沉積法將石墨烯粒子沉積在非導電基材上,並且可藉此方式形成一可撓式石墨烯薄膜。實驗中利用兩種方式還原薄膜,分別是真空還原及酒精還原,前者將薄膜置於真空中加熱至100℃一小時,後者將薄膜置於220℃酒精蒸氣中使其還原;還原薄膜以接觸角量測儀分析,其接觸角由38°提升至83°,實驗中也以XPS、TGA、XRD、Raman儀器鑑定顯示所製備的石墨烯薄膜已達到部分還原的效果,並且由酒精還原之石墨烯薄膜還原效果最好。最後經由四點探針量測還原後薄膜電阻率可達9×10^(-4) Ω∙cm。

摘要(英) The graphene oxide nanoparticles obtained from anodic graphite by electrochemical exfoliation, followed by electrophoretic deposition onto stainless steel or nickel substract. Another way to deposit graphene particles on non-conductive substract is used to produce graphene film, which named Evaporative Deposition(ED). By ED, graphene films can be deposit on polymer substracts like PEN and formed a flexible graphene film. The graphite film formed was reduced in two ways, vacuum treatment with heating up to 100℃ and ethanol treatment with heating up to 220℃. The wetting properties are determined by contact angle measurement. The advancing and receding contact angles of graphene oxide film are 38.4° and 15.5o, respectively. This result reveals the thin film is rather hydrophilic. After the reduction treatment, the advancing and receding contact angle increased to 83.1° and 50.5°, respectively, indicating that the surface of graphene oxide film becomes more hydrophobic. By the analysis of TGA, Raman, XRD and XPS, the results proved that both of the reduction treatment had attained a reduction effect. After the reduction, a graphene film was obtained and the resistivity of the film is 9×10^(-4) Ω∙cm.
關鍵字(中) ★ 石墨烯
★ 還原
關鍵字(英) ★ Graphene
★ Reduction
論文目次 摘要 i
Abstract ii
致謝 iii
圖目錄 vii
表目錄 x
第1章 緒論 1
1-1 石墨 1
1-2 石墨烯 2
1-3 相關文獻回顧 3
1-4 研究動機與目的 7
第2章 原理介紹 8
2-1 石墨烯之製備 8
2-2 電解剝落法 11
2-3 電解剝落法之原理 12
2-4 電泳沉積法 12
2-4-1 電泳沉積法之原理 13
2-5 咖啡漬圈環效應(Coffee Ring Effect) 14
第3章 理論背景 16
3-1 潤濕現象 16
3-1-2 表面潤濕現象 17
3-2 潤濕現象的定義 18
3-2-1 楊式方程式(Young′s equation) 18
3-2-2 溫佐方程式( Wenzel′s equation ) 21
3-2-3 卡西方程式(Cassie′s equation) 23
3-3 接觸角遲滯現象(Contact angle hysteresis) 24
3-3-2 接觸角遲滯的定義 26
3-3-3 遲滯現象的原理 27
3-4 動態接觸角(Dynamic contact angle) 29
3-5 潤濕現象的量測方式 29
3-5-1 微量針頭法( Needle-Syringe ) 29
3-5-2 蒸發法(Evaporation method) 30
3-5-3 Wilhelmy 平板法( Plate Method ) 32
3-5-4 傾斜法 ( Inclined plate ) 32
第4章 實驗介紹 34
4-1 實驗藥品及材料 34
4-2 實驗儀器 35
4-2-1 影像式接觸角測量儀 37
4-2-2 分光光譜儀 (UV) 37
4-2-3 動態光散射 (Dynamic light scattering) 39
4-2-4 熱重分析儀 (TGA) 39
4-2-5 光電子能譜儀 ( XPS, mapping ,depth profile ) 39
4-2-6 X光粉末繞射儀 (X-ray Diffractometer,簡稱XRD) 40
4-2-7 拉曼 (Raman) 40
4-2-8 三維量測儀 (Alpha-step) 41
4-2-9 四點探針 41
4-3 實驗方法 42
4-3-1 材料實驗前處理 42
4-3-2 電解剝落之實驗步驟 42
4-3-3 電泳沉積之實驗步驟 42
4-3-4 蒸發沉積之實驗步驟 43
4-3-5 石墨烯薄膜還原之實驗步驟 43
第5章 結果與討論 44
5-1 不同酸鹼性之電解液對電泳沉積之影響 44
5-2 不同粒徑大小及電壓對電泳沉積之影響 48
5-2-1 粒徑大小對電泳沉積之影響 48
5-2-2 電壓大小對電泳沉積之影響 48
5-3 石墨烯薄膜之還原 51
5-3-1 低溫抽真空以還原石墨烯薄膜 51
5-3-2 低溫酒精蒸氣還原石墨烯薄膜 52
5-4 石墨烯薄膜還原之驗證 57
5-5 蒸發沉積法 (Eavporative Deposition) 65
5-6 薄膜性質之比較 70
第6章 結論 72
第7章 參考資料 74



參考文獻 [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, K. S. Novoselov, A. K. Geim, Electric field effect in atomically thin carbon films, Science 306, 666-669 (2004).
[2] V. Lee, L. Whittaker, C. Jaye, K. M. Baroudi, D. A. Fischer, S. Banerjee, Large –area chemically modified graphene films: electrophoretic deposition and characterization by soft X-ray absortion spectroscopy, Chem. Mater. 21, 3905-3916 (2009)
[3] Z. S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu, H. M. Cheng, Field emission of single-layer graphene films prepared by electrophoretic deposition, Adv. Mater. 21, 1756-1760 (2009)
[4] S. J. An, Y. Zhu, S. H. Lee, M. D. Stoller, T. Emilsson, S. Park, A. Velamakanni, J. An, R. S. Ruoff, Thin Film Fabrication and Simultaneous Anodic Reduction of Deposited Graphene Oxide Platelets by Electrophoretic Deposition, J. Phys. Chem. Lett. 1, 1259–1263 (2010)
[5] A. Chavez-Valdez, M. S. P. Shaffer, A. R. Boccaccini, Applications of Graphene Electrophoretic Deposition. A Review, J. Phys. Chem. B, 117, 1502−1515 (2013)
[6] J. H, Park, J. M. Park, Electrophoretic deposition of graphene oxide on mild carbon steel for anti-corrosion application, Surface & Coatings Technology 254 167–174 (2014)
[7] M. Wang, J. Oh, T. Ghosh, S. Hong, G. Nam, T. Hwangb, J. D. Nam, An interleaved porous laminate composed of reduced graphene oxide sheets and carbon black spacers by in situ electrophoretic deposition, RSC Adv. 4, 3284–3292 (2014)
[8] M. Wang, L. D. Duong, J. S. Oh, N. T. Mai, S. Kim, S. Hong, T. Hwang, Y. Lee, J.D. Nam, Large-Area, Conductive and Flexible Reduced Graphene Oxide (RGO) Membrane Fabricated by Electrophoretic Deposition (EPD), ACS Appl. Mater. Interfaces 6, 1747−1753 (2014)
[9] S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno, Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chemical Physics Letters 360, 229–234 (2002)
[10] C. Y. Su, Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, C. H. Tsai, Y. Huang, L. J. Li, Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors, ACS Nano 4, 9, 5285–5292 (2010)
[11] D. R. Dreyer, S. Murali, Y. Zhu, R. S. Ruoffb, C. W. Bielawski, Reduction of graphite oxide using alcohols, J. Mater. Chem. 21, 3443–3447 (2011)
[12] S. Liua, Ke Chena, Y. Fua, S. Yua, Z. Baoa, Reduced graphene oxide paper by supercritical ethanol treatment and its electrochemical properties, Applied Surface Science 258, 5299–5303 (2012)
[13] Z, G, Wang, P. J. Li, Y. F. Chen, J. R. He, B. J. Zheng, J. B. Liu, F. Qi, The green synthesis of reduced graphene oxide by the ethanol-thermal reaction and its electrical properties, Materials Letters 116, 416–419 (2014)
[14] F. Schedin, A. K. Geim, N. Kostya, M. Sergey, J. Da, H. Ernie, Detection of individual gas molecules adsorbed on graphene, Nature materials,6, 652-655 (2007).
[15] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene, Science 312, 1191-1196 (2006).
[16] S. Park, R. S. Ruoff, Chemical methods for the production of graphenes, Nature nanotechnology 4, 217-224 (2009).
[17] B. C. Brodie, Sur le poids atomique du graphite, Ann. Chim Phys 59, 466-472(1860).
[18] W. S. Hummers Jr., R. E. Offeman, Preparation of graphitic oxide, Journal of the American Chemical Society 80, 1339-1339 (1958).
[19] R.D. Deegan,O.Bakajin, T.F. Dupont, G. Huber,S. R. Nagel, T. A. Witten, Capillary flows the cause of ring stains from dried liquid drops, Nature 389, 827-829 (1997)
[20] Y. F. Li, Y. J. Sheng, H. K. Tsao, Evaporation Stains: Suppressing the coffee-ring effect by contact angle hysteresis, Langmair 29, 7802-7811 (2013)
[21] 葉銘智, 分子構型對濕透行為之影響研究, 國立台灣大學化學工程學研究所博士論文 (2003)
[22] J. S. Rowlinson, B. Widom, Molecular Theory of Capillarity, Oxford.,66, 816 (1982).
[23] R. N. Wenzel, Resistance of solid surfaces to wetting by water, Industrial & Engineering Chemistry 28, 988 (1936).
[24] A. B. D. Cassie, S. Baxter, Wettability of porous surfaces , Trans. Faraday Soc.,40, 546 (1944).
[25] R. E. Johnson, R. H. Dettre, Contact angle hysteresis. Contact angle, wettability, and adhesion, Advances in Chemistry 43, 112 (1964).
[26] J.F.Joanny and P.G. de Gennes, A model for contact angle hysteresis, Journal of Chemical Physics 81,552(1984)
[27] S. J. Hong, F. M. Chang, T. H Chou, S. H. Chan, Y. J. Sheng, H. K. Tsao, Anomalous Contact Angle Hysteresis of a Captive Bubble: Advancing Contact Line Pinning, Langmuir 27, 6890-6896 (2011).
[28] E. Rame, The interpretation of dynamic contact angles measured by the Wilhelmy plate method, Journal of colloid and interface science 185, 245-251 (1997).
[29] Y. F. Li, S. M. Chen, W. H. Lai, Y. J. Sheng, H. K. Tsao, Superhydrophilic graphite surfaces and water-dispersible graphite colloids by electrochemical exfoliation, J. Chem. Phys 139, 064703-1-064703-11 (2013)
[30] S. Paria, R. G. Chaudhuri, N. N. Jason, Self-assembly of colloidal sulfur particles on a glass surface from evaporating sessile drops: influence of different salts, New J. Chem. 38, 5943-5951 (2014)

指導教授 曹恆光(Heng-Kwong Tsao) 審核日期 2015-6-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明