博碩士論文 102324032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.145.97.248
姓名 林哿塵(Ke-chen Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究
(Pluripotency and Proliferation of Amniotic Fluid-Derived Stem Cells Cultured on Biomaterials Grafted with Oligopeptides and Cyclic RGD Having Optimal Elasticity)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光對羊水間葉幹細胞成骨分化之影響★ 可見光調控神經細胞之基因表現及突觸生長
★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究★ 人類表皮成長因子的結構穩定性及生物活性測定
★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養
★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養
★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究
★ 人類脂肪幹細胞的膜純化法與分化能力研究★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞
★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上★ 使用不同孔洞大小之耐倫薄膜從脂肪組織中分離及純化人類脂肪幹細胞之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 人類羊水來源的幹細胞是一種多能性胎細胞,其具有分化成三胚層以及各種專門細胞系的能力,在再生醫學與組織工程中,從羊水中取得的幹細胞將是一種更適合的幹細胞來源,然而幹細胞的一些特質,例如適當的分化和多能性的維持,不僅會受到細胞自己本身的影響,也會因為周遭微環境的不同而改變,另一方面而言,細胞的多能性與分化將會受到用來培養的生醫材料之生物線索(例如細胞外間質)以及物理線索(例如表面硬度)的不同而影響其命運,我們在這篇研究中,利用將羊水幹細胞培養在具有不同軟硬度的聚- (乙烯醇共衣康酸) 膜 (PVA-IA films) 接枝某些細胞外間質的寡肽,並將其與環狀肽 (Cyclic RGD)作結合來探討羊水幹細胞的多能性維持與分化能力。我們從測量多能性基因 (Oct4、Sox2、Naong) 的結果中發現,羊水幹細胞培養在較軟的PVA-IA films (19.6 百帕) 接枝細胞外間質寡肽會有較高的多能性表現,而羊水幹細胞培養在較硬的PVA-IA films膜 (30.4 百帕)接枝第一型膠原蛋白寡肽和環狀肽,其會比在相同硬度之下只接枝第一型膠原蛋白寡肽還要有更高的多能性表現。我們從羊水幹細胞培養在以PVA-IA films為基質的材料且培養於細胞成長培養液中意外的發現,擁有較高多能性表現的細胞也會同時表現較高的前期三胚層分化基因,從這項結果可說明羊水幹細胞是一種非勻相的細胞系,其細胞組態包含了具有高多能性的幹細胞以及容易分化的幹細胞。在所有的結果中可發現,用來培養的生醫材料之物理效應 (例如表面硬度) 與生物效應 (例如細胞外間質) 的確可用來調控幹細胞的多能性和分化能力。
摘要(英) Human amniotic fluid-derived stem cells (AFSCs) are pluripotent fetal cells capable of differentiating into multiple lineages, including representatives of the three embryonic germ layers. Stem cells which derived from human amniotic fluid may become a more suitable source of stem cells in regenerative medicine and tissue engineering. However, stem cell characteristics, such as proper differentiation and maintenance of pluripotency, are regulated not only by the stem cells themselves but also by their microenvironment. On the other hand, the stem cell fates of pluripotency and differentiation can influence by biological cues (i.e. extracellular matrix (ECM)) and physical cues (i.e. elasticity) of cell culture biomaterials. Here we investigated the maintenance of pluripotency and differentiation ability of AFSCs cultured on poly(vinylalcohol-co-itaconic acid), PVA-IA films grafted with several ECM-derived oligopeptides and combined with cyclic RGD having different elasticity. AFSCs cultured on soft PVA-IA films (19.6 kPa) grafted with ECM-derived oligopeptides showed high pluripotency, as assessed by the pluripotent gene expression (Oct4, Sox2, and Naong). AFSCs grow on stiff PVA-IA films (30.4 kPa) grafted with the combination of oligopeptides derived from collagen type I (oligoCOL) and cyclic RGD peptide showed higher pluripotency than that grafted with oligoCOL. Surprisingly, AFSCs cultured on PVA-IA films showed higher pluripotency also expressed higher level of early differentiation markers for three germ layers (Nestin, Runx2, Sox17) in expansion medium. This result suggests that AFSCs are heterogenous and that this population contains highly pluripotent stem cells and stem cells that can be easily differentiated. It is suggested that physical cues such as stiffness of culture biomaterials and biological cues such as ECM-derived peptides can guide pluripotency and differentiation ability of stem cells.
關鍵字(中) ★ 羊水幹細胞
★ 聚乙烯醇
★ 硬度
★ 環狀肽
★ 寡肽
★ 生醫材料
關鍵字(英) ★ Amniotic fluid-derived stem cells
★ Polyvinylalcohol
★ Elasticity
★ Cyclic RGD
★ Oligopeptides
★ Biomaterials
論文目次 INDEX OF CONTENT
CHAPTER ONE INTRODUCTION 1
1-1 Stem cell 1
1-1-1 Potency of stem cells 2
1-1-2 Totipotency 2
1-1-3 Pluripotency 2
1-1-4 Multipotency 2
1-2 Souces of stem cells 3
1-2-1 Embryonic stem cells (ESCs) 3
1-2-2 Induced pluripotent stem cells (iPSCs) 5
1-2-3 Mesenchymal stem cells (MSCs) 6
1-3 Amniotic fluid-derived stem Cells 7
1-3-1 Amniotic fluid cells 7
1-3-2 Amniotic fluid cell type 9
1-3-3 Isolation of amniotic fluid stem cell (AFSCs) 11
1-3-4 Characterization of amniotic fluid stem cell 12
1-3-5 Pluripotency of amniotic fluid stem cells 14
1-3-6 Differentiation of amniotic fluid stem cells 16
1-4 Niches of stem cells 18
1-4-1 Soluble factors 19
1-4-2 Cell-cell interactions 19
1-4-3 Physical cues affect ex vivo expansion 20
1-4-4 Cell-biomaterials interactions 23
1-5 Extracellular-matrix (ECM) and ECM-mimicking oligopeptides 24
1-5-1 Type and classification of artificial ECMs 25
1-6 The effect of extracellular matrix (ECM) to stem cells 31
1-7 Markers of pluripotent gene 32
1-8 Markers of differentiation lineages of MSCs 34
1-9 Polymerase chain reaction (PCR) 36
1-9-1 Procedure of PCR 37
1-9-2 Reverse transcription polymerase chain reaction (RT-PCR) & Quantitative real time polymerase chain reaction (qRT-PCR) 39
1-9-3 Procedure of RT-PCR 40
CHAPTER TWO MATERIALS AND METHODS 41
2-1 Materials 41
2-1-1 Cultured medium 41
2-1-2 Serum 41
2-1-3 Antibiotics 41
2-1-4 Growth factor 41
2-1-5 PVA-IA film 41
2-1-6 ECM-derived peptides 42
2-1-7 RNA extraction 42
2-1-8 Reverse transcriptase (RT) 42
2-1-9 Real-time PCR (qPCR) 43
2-1-10 Probes for qPCR 43
2-2 Methods and Analysis 43
2-2-1 PVA-IA film preparation 43
2-2-2 Preparation of PVA-IA surfaces grafted with ECM-derived oligopeptides 45
2-2-3 Elasticity measurement of PVA-IA films 46
2-2-4 XPS analysis of dish surface 46
2-2-5 Phosphate buffer saline (PBS) preparation 46
2-2-6 Preparation of FGF-2(b-FGF) protein stock solution 47
2-2-7 Preparation of cell culture medium 47
2-2-8 Cell cultivation 47
2-2-9 Cell density measurements 48
2-2-10 Isolation of total RNA 49
2-2-11 Reverse Transcription of mRNA into cDNA 50
2-2-12 Quantitative real time polymerase chain reaction 51
2-2-13 Imunofluorescence assay 53
CHAPTER THREE RESULTS & DISCUSSION 55
3-1 The elasticity of the PVA-IA films 55
3-2 The XPS measurements of the optimal activation conditions on PVA-IA films 58
3-3 Proliferation of AFSCs cultured on PVA-IA films grafted with ECM-derived oligopeptides having different elasticity 71
3-4 Pluripotency of AFSCs cultured on PVA-IA and PVA-IA films grafted with ECM-derived oligopeptides having different elasticity 84
3-5 Directing AFSCs fates on PVA-IA films by controlling matrix elasticity and extracellular adhesion ligand 91
3-6 The correlation of pluripotency and differentiation in AFSCs cultured on PVA-IA and PVA-IA films grafted with ECM-derived oligopeptides having different elasticity 98
3-7 The expression of pluripotency and differentiation proteins in AFSCs cultured on PVA-IA and PVA-IA films grafted with ECM-derived peptides having different elasticity 104
CHAPTER FOUR CONCLUSIONS 110
CHAPTER FIVE REFERENCES 112

參考文獻 1. Ulloa-Montoya, F., C.M. Verfaillie, and W.S. Hu, Culture systems for pluripotent stem cells. Journal of Bioscience and Bioengineering, 2005. 100(1): p. 12-27.
2. Verfaillie, C., Pluripotent stem cells. Transfusion Clinique Et Biologique, 2009. 16(2): p. 65-69.
3. http://www.ubooks.pub/Books/ON/B0/E27R7642/P1C3S7U27.html.
4. Reya, T., et al., Stem cells, cancer, and cancer stem cells. Nature, 2001. 414(6859): p. 105-111.
5. Fauza, D., Amniotic fluid and placental stem cells. Best Practice & Research in Clinical Obstetrics & Gynaecology, 2004. 18(6): p. 877-891.
6. Kolambkar, Y.M., et al., Chondrogenic differentiation of amniotic fluid-derived stem cells. Journal of Molecular Histology, 2007. 38(5): p. 405-413.
7. De Coppi, P., et al., Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology, 2007. 25(1): p. 100-106.
8. Zheng, Y.-B., et al., Characterization and hepatogenic differentiation of mesenchymal stem cells from human amniotic fluid and human bone marrow: A comparative study. Cell Biology International, 2008. 32(11): p. 1439-1448.
9. Tsai, M.-S., et al., Functional network analysis of the transcriptomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood, and bone marrow. Stem Cells, 2007. 25(10): p. 2511-2523.
10. Kim, J., et al., Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Proliferation, 2007. 40(1): p. 75-90.
11. Battula, V.L., et al., Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilinelage differentiation. Differentiation, 2007. 75(4): p. 279-291.
12. Tsai, M.S., et al., Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biology of Reproduction, 2006. 74(3): p. 545-551.
13. Poloni, A., et al., Characterization and expansion of mesenchymal progenitor cells from first-trimester chorionic villi of human placenta. Cytotherapy, 2008. 10(7): p. 690-697.
14. Gucciardo, L., et al., Fetal mesenchymal stem cells: isolation, properties and potential use in perinatology and regenerative medicine. Bjog-an International Journal of Obstetrics and Gynaecology, 2009. 116(2): p. 166-172.
15. Schöler, H.R., The Potential of Stem Cells: An Inventory, in Nikolaus Knoepffler, Dagmar Schipanski, and Stefan Lorenz Sorgner. 2007, Humanbiotechnology as Social Challenge: Ashgate Publishing. p. 28.
16. Klimanskaya, I., et al., Human embryonic stem cells derived without feeder cells. Lancet, 2005. 365(9471): p. 1636-1641.
17. Yabut, O. and H.S. Bernstein, The promise of human embryonic stem cells in aging-associated diseases. Aging-Us, 2011. 3(5): p. 494-508.
18. Higuchi, A., et al., Biomaterials for the Feeder-Free Culture of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Chemical Reviews, 2011. 111(5): p. 3021-3035.
19. Okita, K., T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells. Nature, 2007. 448(7151): p. 313-U1.
20. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-676.
21. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): p. 1917-1920.
22. Lin, S.-L., et al., Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. Rna-a Publication of the Rna Society, 2008. 14(10): p. 2115-2124.
23. Zhou, H., et al., Generation of Induced Pluripotent Stem Cells Using Recombinant Proteins (vol 4, pg 381, 2009). Cell Stem Cell, 2009. 4(6): p. 581-581.
24. Higuchi, A., et al., Biomimetic Cell Culture Proteins as Extracellular Matrices for Stem Cell Differentiation. Chemical Reviews, 2012. 112(8): p. 4507-4540.
25. Balajthy, Z., et al., Molecular therapies. 2011.
26. Brighton, C.T. and R.M. Hunt, EARLY HISTOLOGICAL AND ULTRASTRUCTURAL-CHANGES IN MEDULLARY FRACTURE CALLUS. Journal of Bone and Joint Surgery-American Volume, 1991. 73A(6): p. 832-847.
27. Bonfield, T.L. and A.I. Caplan, Adult Mesenchymal Stem Cells: An Innovative Therapeutic for Lung Diseases. Discovery Medicine, 2010. 47: p. 337-345.
28. Chamberlain, G., et al., Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 2007. 25(11): p. 2739-2749.
29. Gosden, C.M., Amniotic fluid cell types and culture. British Medical Bulletin, 1983. 39(4): p. 348-354.
30. Hoehn, H. and D. Salk, Morphological and biochemical heterogeneity of amniotic fluid cells in culture, in Methods in Cell Biology, A.L. Samuel and J.D. Gretchen, Editors. 1982. p. 11-34.
31. Tsai, M.S., et al., Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Human Reproduction, 2004. 19(6): p. 1450-1456.
32. Jiang, Y.H., et al., Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002. 418(6893): p. 41-49.
33. Perrone, L., et al., Postnatal weight change is influenced by mother-newborn pair leptin levels. Nutrition Research, 2000. 20(11): p. 1531-1536.
34. Zambotti, F., et al., Monoamine metabolites and related compounds in human amniotic fluid: Assay by gas chromatography and gas chromatography-mass spectrometry. Clinica Chimica Acta 1975. 61(3): p. 247-256.
35. http://muta-tion.blogspot.tw/2011/09/amniocentesis.html.
36. Barry, F.P., et al., The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochemical and Biophysical Research Communications, 1999. 265(1): p. 134-139.
37. Barry, F., et al., The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 2001. 289(2): p. 519-524.
38. Baksh, D., L. Song, and R.S. Tuan, Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. Journal of Cellular and Molecular Medicine, 2004. 8(3): p. 301-316.
39. Ririe, K.M., R.P. Rasmussen, and C.T. Wittwer, Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Analytical Biochemistry, 1997. 245(2): p. 154-160.
40. Shamblott, M.J., et al., Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98(1): p. 113-118.
41. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-147.
42. Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 2002. 13(12): p. 4279-4295.
43. Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677-689.
44. Higuchi, A., et al., Physical Cues of Biomaterials Guide Stem Cell Differentiation Fate. Chemical Reviews, 2013. 113(5): p. 3297-3328.
45. Salasznyk, R.M., et al., Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. Journal of Biomedicine and Biotechnology, 2004(1): p. 24-34.
46. Hashimoto, J., Y. Kariya, and K. Miyazaki, Regulation of proliferation and chondrogenic differentiation of human mesenchymal stem cells by laminin-5 (laminin-332). Stem Cells, 2006. 24(11): p. 2346-2354.
47. Chastain, S.R., et al., Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation. Journal of Biomedical Materials Research Part A, 2006. 78A(1): p. 73-85.
48. Suzuki, S., et al., Effects of Extracellular Matrix on Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells into Smooth Muscle Cell Lineage: Utility for Cardiovascular Tissue Engineering. Cells Tissues Organs, 2010. 191(4): p. 269-280.
49. van Dijk, A., et al., Differentiation of human adipose-derived stem cells towards cardiomyocytes is facilitated by laminin. Cell and Tissue Research, 2008. 334(3): p. 457-467.
50. Mruthyunjaya, S., et al., Laminin-1 induces neurite outgrowth in human mesenchymal stem cells in serum/differentiation factors-free conditions through activation of FAK-MEK/ERK signaling pathways. Biochemical and Biophysical Research Communications, 2010. 391(1): p. 43-48.
51. Delcroix, G.J.R., et al., The therapeutic potential of human multipotent mesenchymal stromal cells combined with pharmacologically active microcarriers transplanted in hemi-parkinsonian rats. Biomaterials, 2011. 32(6): p. 1560-1573.
52. Levenberg, S., et al., Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(22): p. 12741-12746.
53. Park, I.-S., et al., The correlation between human adipose-derived stem cells differentiation and cell adhesion mechanism. Biomaterials, 2009. 30(36): p. 6835-6843.
54. Kubista, M., et al., Brca1 regulates in vitro differentiation of mammary epithelial cells. Oncogene, 2002. 21(31): p. 4747-4756.
55. Soucek, T., et al., A role of the tuberous sclerosis gene-2 product during neuronal differentiation. Oncogene, 1998. 16(17): p. 2197-2204.
56. Prusa, A.R., et al., Neurogenic cells in human amniotic fluid. American Journal of Obstetrics and Gynecology, 2004. 191(1): p. 309-314.
57. Ter Brugge, P.J. and J.A. Jansen, In vitro osteogenic differentiation of rat bone marrow cells subcultured with and without dexamethasone. Tissue Engineering, 2002. 8(2): p. 321-331.
58. Park, J.S., et al., The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta. Biomaterials, 2011. 32(16): p. 3921-3930.
59. Bhandari, D.R., et al., The simplest method for in vitro beta-cell production from human adult stem cells. Differentiation, 2011. 82(3): p. 144-152.
60. Xie, Q.-P., et al., Human bone marrow mesenchymal stem cells differentiate into insulin-producing cells upon microenvironmental manipulation in vitro. Differentiation, 2009. 77(5): p. 483-491.
61. Gabr, M.M., et al., Generation of Insulin-Producing Cells from Human Bone Marrow-Derived Mesenchymal Stem Cells: Comparison of Three Differentiation Protocols. Biomed Research International, 2014.
62. Czubak, P., et al., A Modified Method of Insulin Producing Cells′ Generation from Bone Marrow-Derived Mesenchymal Stem Cells. Journal of Diabetes Research, 2014.
63. Cooper, G.M., The Cell: A Molecular Approach. 2000-2013.
64. Gilbert, P.M., et al., Substrate Elasticity Regulates Skeletal Muscle Stem Cell Self-Renewal in Culture. Science, 2010. 329(5995): p. 1078-1081.
65. Georges, P.C., et al., Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophysical Journal, 2006. 90(8): p. 3012-3018.
66. Flanagan, L.A., et al., Neurite branching on deformable substrates. Neuroreport, 2002. 13(18): p. 2411-2415.
67. Hofstetter, C.P., et al., Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(4): p. 2199-2204.
68. Kondo, T., et al., Sonic hedgehog and retinoic acid synergistically promote sensory fate specification from bone marrow-derived pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(13): p. 4789-4794.
69. Engler, A.J., et al., Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. Journal of Cell Biology, 2004. 166(6): p. 877-887.
70. Ferrari, G., et al., Muscle regeneration by bone marrow derived myogenic progenitors. Science, 1998. 279(5356): p. 1528-1530.
71. Andrades, J.A., et al., Selection and amplification of a bone marrow cell population and its induction to the chondro-osteogenic lineage by rhOP-1: an in vitro and in vivo study. International Journal of Developmental Biology, 2001. 45(4): p. 689-693.
72. Holmbeck, K., et al., MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell, 1999. 99(1): p. 81-92.
73. Morinobu, M., et al., Osteopontin expression in osteoblasts and osteocytes during bone formation under mechanical stress in the calvarial suture in vivo. Journal of Bone and Mineral Research, 2003. 18(9): p. 1706-1715.
74. Deng, J., et al., Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells, 2006. 24(4): p. 1054-1064.
75. McBeath, R., et al., Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell, 2004. 6(4): p. 483-495.
76. LaIuppa, J.A., et al., Culture materials affect ex vivo expansion of hematopoietic progenitor cells. Journal of Biomedical Materials Research, 1997. 36(3): p. 347-359.
77. Seraj, M.J., et al., Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Research, 2000. 60(11): p. 2764-2769.
78. Discher, D.E., P. Janmey, and Y.L. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science, 2005. 310(5751): p. 1139-1143.
79. Pelham, R.J. and Y.L. Wang, Cell locomotion and focal adhesions are regulated by substrate flexibility. Proceedings of the National Academy of Sciences of the United States of America, 1997. 94(25): p. 13661-13665.
80. Engler, A., et al., Substrate compliance versus ligand density in cell on gel responses. Biophysical Journal, 2004. 86(1): p. 617-628.
81. Georges, P.C. and P.A. Janmey, Cell type-specific response to growth on soft materials. Journal of Applied Physiology, 2005. 98(4): p. 1547-1553.
82. Lu, Z., et al., Collagen Type II Enhances Chondrogenesis in Adipose Tissue-Derived Stem Cells by Affecting Cell Shape. Tissue Engineering Part A, 2010. 16(1): p. 81-90.
83. Kikkawa, Y., et al., Integrin binding specificity of laminin-10/11 : laminin-10/11 are recognized by alpha 3 beta 1, alpha 6 beta 1 and alpha 6 beta 4 integrins. Journal of Cell Science, 2000. 113(5): p. 869-876.
84. Jiang, X.S., et al., Surface-immobilization of adhesion peptides on substrate for ex vivo expansion of cryopreserved umbilical cord blood CD34(+) cells. Biomaterials, 2006. 27(13): p. 2723-2732.
85. Gelain, F., et al., Designer Self-Assembling Peptide Nanofiber Scaffolds for Adult Mouse Neural Stem Cell 3-Dimensional Cultures. Plos One, 2006. 1(2).
86. Frontiers in tissue engineering. 1998.
87. Rosso, F., et al., From cell-ECM interactions to tissue engineering. Journal of Cellular Physiology, 2004. 199(2): p. 174-180.
88. Langer, R. and J.P. Vacanti, Tissue engineering. Science, 1993. 260(5110): p. 920-926.
89. Barbucci, R., Integrated Biomaterials Science. 2002.
90. Putnam, A.J. and D.J. Mooney, Tissue engineering using synthetic extracellular matrices. Nature Medicine, 1996. 2(7): p. 824-826.
91. Daley, W.P., S.B. Peters, and M. Larsen, Extracellular matrix dynamics in development and regenerative medicine. Journal of Cell Science, 2008. 121(3): p. 255-264.
92. Rozario, T. and D.W. DeSimone, The extracellular matrix in development and morphogenesis: A dynamic view. Developmental Biology, 2010. 341(1): p. 126-140.
93. Chen, L.-Y., et al., Effect of the surface density of nanosegments immobilized on culture dishes on ex vivo expansion of hematopoietic stem and progenitor cells from umbilical cord blood. Acta Biomaterialia, 2012. 8(5): p. 1749-1758.
94. Koivunen, E., B.C. Wang, and E. Ruoslahti, Phage Libraries Displaying Cyclic Peptides with Different Ring Sizes: Ligand Specificities of the RGD-Directed Integrins. Bio-Technology, 1995. 13(3): p. 265-270.
95. Kolhar, P., et al., Synthetic surfaces for human embryonic stem cell culture. Journal of Biotechnology, 2010. 146(3): p. 143-146.
96. Klim, J.R., et al., A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nature Methods, 2010. 7(12): p. 989-994.
97. Rosso, F., et al., Smart materials as scaffolds for tissue engineering. Journal of Cellular Physiology, 2005. 203(3): p. 465-470.
98. Moroni, L., J.R. De Wijn, and C.A. Van Blitterswijk, Integrating novel technologies to fabricate smart scaffolds. Journal of Biomaterials Science-Polymer Edition, 2008. 19(5): p. 543-572.
99. Mano, J.F., et al., Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. Journal of the Royal Society Interface, 2007. 4(17): p. 999-1030.
100. Lee, C.H., A. Singla, and Y. Lee, Biomedical applications of collagen. International Journal of Pharmaceutics, 2001. 221(1-2): p. 1-22.
101. Pankov, R. and K.M. Yamada, Fibronectin at a glance. Journal of Cell Science, 2002. 115(20): p. 3861-3863.
102. Mao, Y. and J.E. Schwarzbauer, Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biology, 2005. 24(6): p. 389-399.
103. http://www.sigmaaldrich.com/catalog/product/sigma/V8379?lang=en®ion=TW.
104. Ogawa, T., et al., The short arm of laminin gamma 2 chain of laminin-5 (laminin-332) binds syndecan-1 and regulates cellular adhesion and migration by suppressing phosphorylation of integrin beta 4 chain. Molecular Biology of the Cell, 2007. 18(5): p. 1621-1633.
105. Klees, R.F., et al., Laminin-5 induces osteogenic gene expression in human mesenchymal stem cells through an ERK-dependent pathway. Molecular Biology of the Cell, 2005. 16(2): p. 881-890.
106. Ma, W., et al., Cell-extracellular matrix interactions regulate neural differentiation of human embryonic stem cells. Bmc Developmental Biology, 2008. 8.
107. Tate, C.C., et al., Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain. Journal of Tissue Engineering and Regenerative Medicine, 2009. 3(3): p. 208-217.
108. Hayman, M.W., et al., Growth of human stem cell-derived neurons on solid three-dimensional polymers. Journal of Biochemical and Biophysical Methods, 2005. 62(3): p. 231-240.
109. Martinez-Ramos, C., et al., Differentiation of postnatal neural stem cells into glia and functional neurons on laminin-coated polymeric substrates. Tissue Engineering Part A, 2008. 14(8): p. 1365-1375.
110. Li, S., et al., Matrix assembly, regulation, and survival functions of laminin and its receptors in embryonic stem cell differentiation. Journal of Cell Biology, 2002. 157(7): p. 1279-1290.
111. Hall, P.E., et al., Laminin enhances the growth of human neural stem cells in defined culture media. Bmc Neuroscience, 2008. 9.
112. Delcroix, G.J.R., et al., Adult cell therapy for brain neuronal damages and the role of tissue engineering. Biomaterials, 2010. 31(8): p. 2105-2120.
113. Kleinman, H.K. and G.R. Martin, Matrigel: Basement membrane matrix with biological activity. Seminars in Cancer Biology, 2005. 15(5): p. 378-386.
114. Haque, A., et al., The effect of recombinant E-cadherin substratum on the differentiation of endoderm-derived hepatocyte-like cells from embryonic stem cells. Biomaterials, 2011. 32(8): p. 2032-2042.
115. Kaur, G., et al., The promotion of osteoblastic differentiation of rat bone marrow stromal cells by a polyvalent plant mosaic virus. Biomaterials, 2008. 29(30): p. 4074-4081.
116. Yue, X.-S., et al., A fusion protein N-cadherin-Fc as an artificial extracellular matrix surface for maintenance of stem cell features. Biomaterials, 2010. 31(20): p. 5287-5296.
117. Shi, C., et al., Stem-cell-capturing collagen scaffold promotes cardiac tissue regeneration. Biomaterials, 2011. 32(10): p. 2508-2515.
118. Lee, H.J., et al., Enhanced Chondrogenesis of Mesenchymal Stem Cells in Collagen Mimetic Peptide-Mediated Microenvironment. Tissue Engineering Part A, 2008. 14(11): p. 1843-1851.
119. You, M., et al., Chondrogenic differentiation of human bone marrow mesenchymal stem cells on polyhydroxyalkanoate (PHA) scaffolds coated with PHA granule binding protein PhaP fused with RGD peptide. Biomaterials, 2011. 32(9): p. 2305-2313.
120. Hennessy, K.M., et al., The effect of collagen I mimetic peptides on mesenchymal stem cell adhesion and differentiation, and on bone formation at hydroxyapatite surfaces. Biomaterials, 2009. 30(10): p. 1898-1909.
121. Yang, F., et al., The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials, 2005. 26(30): p. 5991-5998.
122. Nguyen, L.H., et al., Unique biomaterial compositions direct bone marrow stem cells into specific chondrocytic phenotypes corresponding to the various zones of articular cartilage. Biomaterials, 2011. 32(5): p. 1327-1338.
123. Betre, H., et al., Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials, 2006. 27(1): p. 91-99.
124. Meinel, L., et al., Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. Journal of Biomedical Materials Research Part A, 2004. 71A(1): p. 25-34.
125. Santiago, L.Y., et al., Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials, 2006. 27(15): p. 2962-2969.
126. Wojtowicz, A.M., et al., Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. Biomaterials, 2010. 31(9): p. 2574-2582.
127. Cooke, M.J., et al., Neural differentiation regulated by biomimetic surfaces presenting motifs of extracellular matrix proteins. Journal of Biomedical Materials Research Part A, 2010. 93A(3): p. 824-832.
128. Anderson, J.M., et al., Osteogenic Differentiation of Human Mesenchymal Stem Cells Directed by Extracellular Matrix-Mimicking Ligands in a Biomimetic Self-Assembled Peptide Amphiphile Nanomatrix. Biomacromolecules, 2009. 10(10): p. 2935-2944.
129. Bhatnagar, R.S., J.J. Qian, and C.A. Gough, The role in cell binding of a beta-bend within the triple helical region in collagen alpha 1(I) chain: Structural and biological evidence for conformational tautomerism on fiber surface. Journal of Biomolecular Structure & Dynamics, 1997. 14(5): p. 547-60.
130. Higuchi, A., et al., Polymeric Materials for Ex vivo Expansion of Hematopoietic Progenitor and Stem Cells. Polymer Reviews, 2009. 49(3): p. 181-200.
131. Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nature Biotechnology, 2010. 28(6): p. 606-610.
132. Pierschbacher, M.D. and E. Ruoslahti, Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 1984. 309(5963): p. 30-33.
133. Suzuki, S., et al., Complete amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell attachment sites in vitronectin and fibronectin. The Embo Journal, 1985. 4(10): p. 2519-2524.
134. Oldberg, A., A. Franzén, and D. Heinegård, The primary structure of a cell-binding bone sialoprotein. The Journal of Biological Chemistry, 1988. 263(36): p. 19430-19432.
135. Scadden, D.T., The stem-cell niche as an entity of action. Nature, 2006. 441(7097): p. 1075-1079.
136. Nilsson, S.K., et al., Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood, 2005. 106(4): p. 1232-1239.
137. Moore, K.A. and I.R. Lemischka, Stem cells and their niches. Science, 2006. 311(5769): p. 1880-1885.
138. Schofield, R., The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 1978. 4(1-2): p. 7-25.
139. Li, L.H. and T. Xie, Stem cell niche: Structure and function, in Annual Review of Cell and Developmental Biology. 2005. p. 605-631.
140. Jensen, U.B., S. Lowell, and F.M. Watt, The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development, 1999. 126(11): p. 2409-2418.
141. Nuttelman, C.R., M.C. Tripodi, and K.S. Anseth, Synthetic hydrogel niches that promote hMSC viability. Matrix Biology, 2005. 24(3): p. 208-218.
142. Feng, Q., et al., Expansion of engrafting human hematopoietic stem/progenitor cells in three-dimensional scaffolds with surface-immobilized fibronectin. Journal of Biomedical Materials Research Part A, 2006. 78A(4): p. 781-791.
143. Gerecht, S., et al., Hyaluronic acid hydrogen for controlled self-renewal and differentiation of human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(27): p. 11298-11303.
144. Chang, C.-F., et al., Three-dimensional collagen fiber remodeling by mesenchymal stem cells requires the integrin-matrix interaction. Journal of Biomedical Materials Research Part A, 2007. 80A(2): p. 466-474.
145. Donovan, P.J. and J. Gearhart, The end of the beginning for pluripotent stem cells. Nature, 2001. 414(6859): p. 92-97.
146. Rosner, M.H., et al., A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature, 1990. 345(6277): p. 686-692.
147. Scholer, H.R., et al., Oct-4: a germline-specific transcription factor mapping to the mouse t-complex. Embo Journal, 1990. 9(7): p. 2185-2195.
148. Scholer, H.R., et al., New type of POU domain in germ line-specific protein Oct-4. Nature, 1990. 344(6265): p. 435-439.
149. Avilion, A.A., et al., Multipotent cell lineages in early mouse development depend on SOX2 function. Genes & Development, 2003. 17(1): p. 126-140.
150. Chambers, I., et al., Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 2003. 113(5): p. 643-655.
151. Mitsui, K., et al., The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 2003. 113(5): p. 631-642.
152. Carlin, R., et al., Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reproductive Biology and Endocrinology, 2006. 4.
153. Darr, H., Y. Mayshar, and N. Benvenisty, Overexpression of NANOG in human ES cells enables feeder-free growth while inducing primitive ectoderm features. Development, 2006. 133(6): p. 1193-1201.
154. Zaehres, H., et al., High-efficiency RNA interference in human embryonic stem cells. Stem Cells, 2005. 23(3): p. 299-305.
155. Chambers, I. and S.R. Tomlinson, The transcriptional foundation of pluripotency. Development, 2009. 136(14): p. 2311-2322.
156. Masui, S., et al., Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nature Cell Biology, 2007. 9(6): p. 625-U26.
157. Takeda, J., S. Seino, and G.I. Bell, Human Oct3 gene family: cDNA sequences, alternative splicing, gene organization, chromosomal location, and expression at low levels in adult tissues. Nucleic Acids Research, 1992. 20(17): p. 4613-4620.
158. Boyer, L.A., et al., Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 2005. 122(6): p. 947-956.
159. Looijenga, L.H.J., et al., POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Research, 2003. 63(9): p. 2244-2250.
160. Rodda, D.J., et al., Transcriptional regulation of Nanog by Oct4 and Sox2. Journal of Biological Chemistry, 2005. 280(26): p. 24731-24737.
161. Otto, F., et al., Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, 1997. 89(5): p. 765-771.
162. Komori, T., Regulation of osteoblast differentiation by transcription factors. Journal of Cellular Biochemistry, 2006. 99(5): p. 1233-1239.
163. Otto, F., H. Kanegane, and S. Mundlos, Mutations in the RUNX2 gene in patients with clelidocranial dysplasia. Human Mutation, 2002. 19(3): p. 209-216.
164. Aubin, J.E., et al., Intermediate filaments of the vimentin-type and the cytokeratin-type are distributed differently during mitosis. Experimental Cell Research, 1980. 129(1): p. 149-165.
165. Chou, Y.H., et al., Intermediate Filament Reorganization during Mitosis Is Mediated by P34cdc2 Phosphorylation of Vimentin. Cell, 1990. 62(6): p. 1063-1071.
166. Chou, Y.H., et al., The relative roles of specific N- and C-terminal phosphorylation sites in the disassembly of intermediate filament in mitotic BHK-21 cells. Journal of Cell Science, 1996. 109: p. 817-826.
167. Chou, Y.H., et al., Nestin promotes the phosphorylation-dependent disassembly of vimentin intermediate filaments during mitosis. Molecular Biology of the Cell, 2003. 14(4): p. 1468-1478.
168. Eliasson, C., et al., Intermediate filament protein partnership in astrocytes. Journal of Biological Chemistry, 1999. 274(34): p. 23996-24006.
169. Kachinsky, A.M., J.A. Dominov, and J.B. Miller, Intermediate filaments in cardiac myogenesis: nestin in the developing mouse heart. Journal of Histochemistry & Cytochemistry, 1995. 43(8): p. 843-847.
170. Michalczyk, K. and M. Ziman, Nestin structure and predicted function in cellular cytoskeletal organisation. Histology and Histopathology, 2005. 20(2): p. 665-671.
171. Seguin, C.A., et al., Establishment of endoderm progenitors by SOX transcription factor expression in human embryonic stem cells. Cell Stem Cell, 2008. 3(2): p. 182-195.
172. O′Connor, J., B. Sexton, and R.S.C. Smart, Surface analysis methods in materials science. Springer-Verlag.
173. Chadwick, K., et al., Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood, 2003. 102(3): p. 906-915.
174. Chien, A., D.B. Edgar, and J.M. Trela, Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol, 1976. 127(3): p. 1550-1557.
175. Freeman, W.M., S.J. Walker, and K.E. Vrana, Quantitative RT-PCR: Pitfalls and potential. Biotechniques, 1999. 26(1): p. 112-+.
176. Lawyer, F.C., et al., High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5′ to 3′ exonuclease activity. PCR Methods Appl, 1993. 2(4): p. 275-287.
177. Simmons, P.J. and B. Torokstorb, Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood, 1991. 78(1): p. 55-62.
178. Gilliland, G., et al., Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proceedings of the National Academy of Sciences of the United States of America, 1990. 87(7): p. 2725-2729.
179. Rappolee, D.A., et al., Wound macrophages express TGF-alpha and other growth factors in vivo: analysis by mRNA phenotyping. Science, 1988. 241(4866): p. 708-712.
180. Becker-André, M. and K. Hahlbrock, Absolute mRNA quantification using the polymerase chain reaction (PCR). A novel approach by a PCR aided transcript titration assay (PATTY). Nucleic Acids Research, 1989. 17(22): p. 9437-9446.
181. Zhang, S.C., et al., In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnology, 2001. 19(12): p. 1129-1133.
182. Cheng, S., et al., Effective amplification of long targets from cloned inserts and human genomic DNA. Proceedings of the National Academy of Sciences of the United States of America, 1994. 91(12): p. 5695-5699.
183. Holland, P.M., et al., Detection of Specific Polymerase Chain-Reaction Product by Utilizing the 5′-]3′ Exonuclease Activity of Thermus-Aquaticus DNA-Polymerase. Proceedings of the National Academy of Sciences of the United States of America, 1991. 88(16): p. 7276-7280.
184. Chen, C.F., et al., Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 2005. 33(20).
185. Niesters, H.G.M., Quantitation of viral load using real-time amplification techniques. Methods, 2001. 25(4): p. 419-429.
186. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods, 2001. 25(4): p. 402-408.
187. Schmittgen, T.D. and K.J. Livak, Analyzing real-time PCR data by the comparative C-T method. Nature Protocols, 2008. 3(6): p. 1101-1108.
指導教授 樋口亞紺(Akon Higuchi) 審核日期 2015-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明