博碩士論文 102324033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.224.149.242
姓名 陳俊名(Chun-min Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
(Concentrating Nitrous Oxide from Flue Gases of an Adipic Acid Plant by Pressure Swing Adsorption Process)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗
★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬
★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估★ 以變壓吸附法回收水煤氣反應後合成氣中二氧化碳之模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以變壓吸附程序處理己二酸工廠的尾氣,使得濃縮後的氧化亞氮可以再進行下一步驟的反應而成為製造己二酸的原料。本研究的設計根據Dolan et al.專利中的Case study為比對組,即吸附塔塔頂出去的氧化亞氮濃度低於2.5%,而塔底回收的氧化亞氮純度高於66.6%且回收率大於95%。
本研究使用的吸附劑為商用吸附劑5A沸石。研究一開始先以實驗數據中各氣體成份對吸附劑的平衡吸附量進行迴歸,以取得平衡吸附曲線的參數。之後經由理論計算出線性驅動質傳係數,並與突破曲線實驗和脫附實驗做驗證,發現脫附實驗與模擬不吻合因此對於脫附時線性驅動質傳係數做調整。再將所建立好的模擬程式與單塔四步驟程序實驗做驗證,以證明脫附時線性驅動質傳係數同時也驗證程式的可靠度。
最後以雙塔八步驟變壓吸附程序進行模擬,並藉由探討不同的操作變因如吸附塔塔長、進料壓力、真空壓力以及各步驟時間,尋求最適化的操作條件,及最適化操作條件為塔長100 cm,進料壓力2.0 atm,真空壓力0.05 atm高壓吸附時間260 s,同向減壓時間20 s,逆向減壓時間150 s,沖洗時間50 s,弱吸附氣加壓時間20 s。。其最適化的結果為塔頂氧化亞氮濃度2.4%;塔底氧化亞氮純度70.6%、回收率95.9%。
摘要(英) This research studies concentrating nitrous oxide from the flue gases of an adipic acid plant by pressure swing adsorption (PSA) process, so that the concentrated nitrous oxide can be reacted to become the raw materials of producing adipic acid. The targets of this study are to compare to the case study of the patent which was published by Dolan et al. Those are the purity of nitrous oxide from the top effluent gases smaller than 2.5%, and the purity of nitrous oxide from the bottom product higher than 66.6% and recovery higher than 95%.
Commercialized zeolite 5A is used in this study. In the beginning of this study, the experimental adsorption isotherm data were regressed to obtain the parameters of Langmuir-Freundlich isotherm equation. Then the k value of linear driving force (LDF) model were calculated by theory and verified by breakthrough curve and desorption experiment. We found that the simulation were not well fitted with desorption experiment, so we adjusted the value of parameters of desorption rate to fit the experiment. Then we verified the simulation program and the value of parameters of desorption rate by a single-bed four-step process experiment. The agreement is quite good.
In the end of this study, a dual-bed eight-step PSA process is studied. The optimal operating conditions can be obtained by assessing different operating variables such as bed length, feed pressure, vacuum pressure, and the time of each step. The results of optimal operating conditions are 70.6% purity and 95.9% recovery of nitrous oxide at bottom and 2.4% purity of nitrous oxide at top.
關鍵字(中) ★ 變壓吸附
★ 氧化亞氮
★ 製程模擬
關鍵字(英) ★ Pressure Swing Adsorption
★ Nitorus Oxide
★ Process simulation
論文目次 摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 ix
表目錄 xvi
第一章、 緒論 1
第二章、 簡介及文獻回顧 6
2-1 吸附之簡介 6
2-1-1 吸附基本原理 6
2-1-2 吸附劑及其選擇性 8
2-1-3 變壓吸附基本操作步驟 9
2-2 文獻回顧 11
2-2-1 PSA程序之發展與改進 11
2-2-2 理論之回顧 14
2-3 研究背景與目的 15
第三章、 理論 19
3-1 基本假設 20
3-2 統制方程式 21
3-3 吸附平衡關係式 26
3-3-1 等溫吸附平衡關係式 26
3-3-2 吸附熱關係式 27
3-4 參數推導 28
3-4-1 線性驅動質傳係數 28
3-4-2 軸向分散係數 31
3-4-3 熱傳係數 33
3-5 邊界條件與流速 35
3-5-1 邊界條件與節點流速 35
3-5-2 閥公式 36
3-6 求解步驟 37
第四章、 平衡吸附曲線與吸脫附曲線 40
4-1 吸附平衡(Adsorption Equilibrium) 41
4-1-1 氣體與吸附劑性質 41
4-1-2 等溫平衡吸附曲線(Isotherm) 43
4-2 吸附動力學(Adsorption kinetics) 46
4-2-1 線性驅動質傳係數計算 46
4-2-2 突破曲線模擬驗證 49
4-2-3 脫附實驗模擬驗證 55
第五章、 製程描述 61
5-1 單塔四步驟變壓吸附程序 62
5-2 雙塔八步驟變壓吸附程序 64
第六章、 數據分析與結果討論 67
6-1 單塔四步驟變壓吸附程序驗證 67
6-1-1 高壓吸附時間(2nd step time)對單塔四步驟PSA製程之影響 ………………………………………………………………...69
6-1-2 進料壓力對單塔四步驟PSA製程之影響 77
6-2 雙塔八步驟變壓吸附程序之模擬 85
6-2-1 塔長對雙塔八步驟PSA製程之影響 88
6-2-2 進料壓力對雙塔八步驟PSA製程之影響 93
6-2-3 真空壓力對雙塔八步驟PSA製程之影響 98
6-2-4 高壓吸附時間(2nd/6th step time)對雙塔八步驟PSA製程之影響 ……………………………………………………………….103
6-2-5 沖洗時間(3rd/7th step time)對雙塔八步驟PSA製程之影響 ……………………………………………………………….108
6-2-6 同向減壓時間(1st/5th step time)對雙塔八步驟PSA製程之影響 ……………………………………………………………….113
6-2-7 弱吸附氣加壓時間(4th/8th step time)對雙塔八步驟PSA製程之影響 119
6-3 最適化結果討論 124
第七章、 結論 126
符號說明 128
參考文獻 133
附錄A、流速之估算方法 137
附錄B、模擬結果數據 141
附錄C、最適操作條件之塔內壓力變化圖 148
附錄D、最適操作條件之塔內溫度變化圖 149
附錄E、最適操作條件之塔內氣相濃度變化圖 150

參考文獻 [1] J. Perez-Ramirez, F. Kapteijn , K. Schoffel , J.A., “Formation and control of N2O in nitric acid production Where do we stand today?,” Applied Catalysis B: Environmental, pp. 117-151, 2003.
[2] 行政院環保署, “溫室氣體排放統計,” [線上]. Available: http://www.epa.gov.tw/ct.asp?xItem=10052&ctNode=31352&mp=epa. [存取日期: 18, 6, 2015].
[3] J. Houghton, “Climate change 2001, the scientific basis. Contribution of the Working Group I to the Third Assessment Report of the IPCC,” Cambridge, 2001.
[4] International Energy Agency, "CO2 Emissions from Fuel Combustion 2012," OECD Publishing, 2012.
[5] A. Shimizu, K. Tanaka, M. Fujimori, “Abatement technologies for N2O emissions in the adipic acid industry,” Chemosphere - Global Change Science, pp. 425-434, 2000.
[6] W. B. Dolan, A. S. Zarchy, K. M. Patel, T. M. Cowan and M. M. Davis, "Nitrous oxide purification by pressure swing adsorption". United States Patent 6,080,226, 2000.
[7] C. W. Skarstrom, "Method and apparatus for fractionating gaseous mixtures by adsorption". United States Patent 2,944,627, 1960.
[8] R. T. Yang, Gas Separation by Adsorption Process, London: Imperial College Press, 1997.
[9] P. Guerin de Montgareuil and D. Domine, "Process for separating a binary gaseous mixture by adsorption". United States Patent 3,155,468, 1964.
[10] W. D. Marsh, F. S. Pramuk, R. C. Hoke and C. W. Skarstrom, "Pressure equalization depressuring in heatless adsorption". United States Patent 3,142,547, 1964.
[11] T. Tamura, "Absorption process for gas separation". United States Patent 3,797,201, 1974.
[12] K. Chihara and M. Suzuki, "Air drying by pressure swing adsorption," Chem. Eng. Sci., vol. 16, pp. 293-299, 1983.
[13] J. J. Collins, "Air separation by adsorption". United States Patent 4,026,680, 1975.
[14] L. B. Batta, "Selective adsorption gas separation process". United States Patent 3,636,679, 1972.
[15] S. J. Doong and R. T. Yang, "Hydrogen purification by the multibed pressure swing adsorption process," Reactive Polymers, vol. 6, pp. 7-13, 1987.
[16] L. Jiane, V. G. Fox and L. T. Biegler, "Simulation and optimal design of multiple-bed pressure swing adsorption systems," AIChE J., vol. 50, pp. 2904-2914, 2004.
[17] A. Fuderer and E. Rudelstorfer, "Selective adsorption process". United States Patent 3,986,849, 1976.
[18] P. H. Turnock and R. H. Kadlec, "Separation of nitrogen and methane via periodic adsorption," AIChE J., vol. 17, pp. 335-342, 1971.
[19] R. T. Yang and S. J. Doong, "Gas separation by pressure swing adsorption: A pore-diffusion model for bulk separation," AIChE J., vol. 31, pp. 1829-1842, 1985.
[20] M. M. Hassan, N. S. Raghvan and D. M. Ruthven, "Pressure swing air separation on a carbon molecular sieve—II. Investigation of a modified cycle with pressure equalization and no purge," Chem. Eng. Sci., vol. 42, pp. 2037-2043, 1987.
[21] S. Farooq and D. M. Ruthven, "A comparison of linear driving force and pore diffusion models for a pressure swing adsorption bulk separation process," Chem. Eng. Sci., vol. 45, pp. 107-115, 1990.
[22] E. Glueckauf and J. I. Coates, "Theory of chromatography. Part IV. The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation," J. Chem. Soc., pp. 1315-1321, 1947.
[23] T. M. Miller and V. H. Grassian, "A mechanistic study of nitrous oxide adsorption and decomposition on zirconia," Catalysis Letters, vol. 46, pp. 213-221, 1997.
[24] K. Shimizu, M. Tanaka and M. Fujimori, "Abatement technologies for N2O emissions in the adipic acid industry," Chemosphere - Global Change Science, vol. 2, pp. 425-434, 2000.
[25] G. Centi, P. Generali, L. dall′Olio and S. Perathoner, "Removal of N2O from industrial gaseous streams by selective adsorption over metal-exchanged zeolites," Ind. Eng. Chem. Res., vol. 39, pp. 131-137, 2000.
[26] A. Rajendran, T. Hocker, O. D. Giovanni and M. Mazzotti, "Experimental observation of critical depletion: nitrous oxide adsorption on silica gel," Langmuir, vol. 18, pp. 9726-9734, 2002.
[27] J. C. Groen, J. Perez-Ramirez and W. Zhu, "Adsorption of nitrous oxide on silicalite-1," J. Chem. Eng. Data, vol. 47, pp. 587-589, 2002.
[28] Y. Peng, F. Zhang, C. Xu, Q. Xiao, Y. Zhong and W. Zhu, "Adsorption of nitrous oxide on activated carbons," J. Chem. Eng. Data, vol. 54, pp. 3079-3081, 2009.
[29] D. Saha, Z. Bao, F. Jia and S. Deng, "Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A," Environ. Sci. Technol., vol. 44, pp. 1820-1826, 2010.
[30] D. Saha and S. Deng, "Adsorption equilibrium, kinetics, and enthalpy of N2O on zeolite 4A and 13X," J. Chem. Eng. Data, vol. 55, pp. 3312-3317, 2010.
[31] G. Dominguez, R. Hernandez-Huesca and G. Aguilar-Armenta, "Isoteric heats of adsorption of N2O and NO on natural zeolites," J. Mex. Chem. Soc., vol. 54, no. 2, pp. 111-116, 2010.
[32] D. Duong, Adsorption Analysis: Equilibria and Kinetics, London: Imperial College Press, 1998.
[33] S.Farooq, D.M. Ruthven, “Heat effects in adsorptioncolumn dynamics. 2. Experimental validation of theone-dimensional model.,” Ind. Eng. Chem. Res., pp. 1084-1090, 1990.
[34] N. Wakao, S. Kaguei, T. Funazkri, “Effect of fluid dispersioncoefficients on particle-to-fluid heat transfer coefficients inpacked beds: correlation of nusselt numbers.,” Chem. Eng. Sci., pp. 325-336, 1979.
[35] G. Carta, A. Cincotti, “Film model approximation fornon-linear adsorption and diffusion in spherical particles.,” Chem. Eng. Sci., pp. 3483-3488, 1998.
[36] J. Karger, D.M. Ruthven, Diffusion in Zeolites and Other Microporous Solids, New York: Wiley.
[37] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, 2nd ed., New York: John Wiley & Sons, Inc., 2007.
[38] M.D. LeVan, G. Carta, C.M. Yon, Adsorption and ionexchange. In: Green, D.W. (Ed.), Perry’s Chemical Engineers’Handbook., 7th edition, New York.: McGrawHill, 1999.
[39] K. Kawazoe, M. Suzuki, K. Chihara, “Chromatographicstudy of diffusion in molecular-sieving carbon.,” J. Chem. Eng.Jpn., pp. 151-157, 1974.
[40] H. Qinglin, S.M. Sundaram, S. Farooq, “Revisitingtransport of gases in the micropores of carbon molecularsieves.,” Langmuir, pp. 393-405, 2003b.
[41] C.Y. Fan, L.T. Wen, Models for Flow Systems and Chemical Reactors, New York, 1975.
[42] E.N. Fuller, P.D. Schettler and J.C. Giddings, “A Comparison of Methods for Predicting Gaseous Diffusion Coefficients,” J. Gas Chromatogr., pp. 222-227, 1965.
[43] E.N. Fuller, K. Ensley and J.C.Giddings, J.Phys.Chem., p. 3679, 1969.
[44] D. F. Fairbanks and C. R. Wilke, "Diffusion coefficients in multicomponent gas mixtures," Ind. Eng. Chem., vol. 42, pp. 471-475, 1950.
[45] W. L. McCabe, J. C. Smith and P. Harriott, Unit Operations of Chemical Engineering, 7th ed., New York: McGraw-Hill, 2005.
[46] W. H. McAdams, Heat Transmission, 3rd ed., New York: McGraw-Hill, 1954.
[47] P. V. Danckwerts, “Continuous flow systems: Distribution of residence,” 1953, p. 1–13.
[48] 張喬凱, 以變壓吸附法分離汙染空氣中氧化亞氮之模擬, 國立中央大學,碩士論文, 民國103年.
[49] J. M. Smith and H. C. Van Ness, Introduction to Chemical Engineering Thermodynamics, 4th ed., McGraw-Hill Inc., 1987.
[50] R. J. Vorkapic, D. Mohr, “Pure and binary gas adsorption equilibria and kinetics of methane and nitrogen on 4A zeolite by isotope exchange technique,” Adsorption, pp. 145-158, 1999.
[51] S. Cavenati, C. A. Grande, “Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures,” J ChemEng Data, pp. 1095-1101, 2004.
[52] D. M. Ruthven, Principles and adsorption and adsorption processes, New York: Wiley Interscience, 1984.
指導教授 周正堂、楊閎舜(Cheng-tung Chou Houng-sung Yang) 審核日期 2015-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明