博碩士論文 102324034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:2 、訪客IP:34.204.191.0
姓名 謝弦謙(Hsien-Chien Hsieh)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 無電鍍鈷擴散阻障層應用於中溫碲化鉛熱電模組之研究
(Investigation of Electroless Cobalt as Diffusion Barrier for Medium-Temperature PbTe Thermoelectric Modules)
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究★ 無鉛銲料與碲化鉍基材之界面反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2020-7-1以後開放)
摘要(中) 因應大幅增加的綠色替代性能源需求,可將廢熱進行回收發電的中溫型熱電模組,為近年來備受重視的開發項目。在200至600 C溫度下,碲化鉛合金組成之n型與p型熱電材料,皆具有優異的熱電表現。然而,在熱電模組封裝時,卻遇到與模組電極或中間層發生劇烈界面反應,致使模組熱電轉換效率下降或整體模組失效。本研究旨在應用無電鍍鈷擴散阻障層技術,開發新式中溫碲化鉛模組接合,並對其界面穩定度、接觸電阻與模組機械性質進行探討,最後更進一步評估模組中添加層對熱電材料本身性質之影響。在界面反應研究中,n型碲化鉛熱電材料與銅基板直接接合,發生劇烈共晶反應,造成碲化鉛母材融化,界面生成大量Cu2Te,進而使模組失效;而p型與銅基板接合後,則生成大量的Cu3Sn介金屬化合物,使銅電極被完全消耗。在試以鎳基板直接結合後,n型發現鉛與碲元素擴散進鎳電極,造成電極損壞與母材消耗,而p型與電極界面則產生大量針狀Ni3-xSnTe2介金屬化合物。而在應用無電鍍鈷擴散阻障層於碲化鉛及電極中間後,不僅避免上述劇烈界面反應,更有效阻擋原子之交互擴散。在接觸電阻研究中,應用擴散阻障層之n型與p型熱電模組,皆僅顯示微幅上升,對照文獻中其他模組數值發現,本研究之模組接觸電阻皆在可接受數值內。此外,n型與p型模組之機械性質,皆因添加無電鍍鈷擴散阻障層而優化,證明本研究提出之碲化鉛模組在冶金角度、電性接觸、機械行為皆具有良好的表現。最後則是進一步研究模組添加層對碲化鉛母材本身熱電表現之影響,研究發現不論在n型與p型模組中,添加層將有效提升席貝克係數及降低電阻率,進而使熱電材料具有更優異的熱電表現。而經多次量測後發現,模組亦具有良好的熱電性質熱穩定性。此結果表示,中溫型碲化鉛熱電模組,在熱電母材與電極間添加無電鍍鈷擴散阻障層,不僅有效阻擋劇烈界面反應,其模組亦具有良好的電性與強度表現與可靠度,更可提升熱電母材本身之熱電表現,進而增加模組熱電轉換效率,期以貢獻於商用熱電發電模組之開發與研究。
摘要(英) Because of the increasing demand for alternative sources of energy, the development of medium-temperature thermoelectric modules has gained much attention in recent decades. Lead telluride (PbTe) alloy is known for its high thermoelectric performance in both n-type and p-type compounds at temperatures ranging from 200–600 C; however, the performance and stability of the thermoelectric modules during applications are critical concerns in developing practical products. Severe reactions between PbTe alloy, the electrode, and the joining interlayers greatly affect the efficiency of thermoelectric modules. This study investigated the interfacial stability, electrical contact, and mechanical reliability for both n- and p-types PbTe materials on Cu and Ni electrodes with and without Co–P diffusion barrier layer, considering utilization in microelectronics packaging. Severe reactions occurred between medium-temperature thermoelectric PbTe alloys and the Cu or Ni electrodes when they were in contact. When a Cu electrode was used, a eutectic reaction resulted in the formation of molten PbTe and large Cu2Te phases, leading to failure of the Cu/n-PbTe module, and massive Cu3Sn formation caused Cu foil depletion in Cu/p-Pb0.6Sn0.4Te module. When a Ni electrode was used, Pb and Te penetrated into the electrode, and thick needle-like Ni3-xSnTe2 phases formed in n- and p-types PbTe modules, respectively. The severe interfacial problems were avoided by utilizing a Co–P diffusion layer. The mechanical strength was improved because of the insertion of Co–P layer in PbTe joints, and acceptable electrical contacts were measured. In addition, the influence of the added layers on Seebeck coefficient and resistivity enhanced the performance and thermal stability of the tested n- and p-types PbTe thermoelectric materials within the entire temperature range. These results provide new insights for developing highly efficient and reliable n- and p-PbTe thermoelectric power-generation devices using Ni or Cu electrodes suitable for working temperatures.
關鍵字(中) ★ 熱電材料
★ 無電鍍鈷
★ 擴散阻障層
★ 界面反應
★ 推力測試
★ 熱電性質
★ 熱電模組
關鍵字(英) ★ Thermoelectric materials
★ Electroless cobalt
★ Diffusion barrier
★ Interfacial reaction
★ Shear test
★ Thermoelectric property
★ Thermoelectric module
論文目次 摘要 I
Abstract II
致謝辭 III
Contents V
List of Figures VIII
List of Tables XIV
Chapter 1 Introduction 1
1-1 Background 1
1-2 Thermoelectric materials 4
1-2-1 Fundamental theory 4
1-2-2 Applications 7
1-3 PbTe-based thermoelectric materials and its properties 10
1-4 Interfacial reactions of PbTe-based modules 13
1-4-1 Brazing 14
1-4-2 Diffusion bonding (Solid-liquid interdiffusion, SLID) 16
1-4-3 Spark plasma sintering 18
1-4-4 Hot-press bonding 19
1-5 Electroless Co–P diffusion barrier 22
1-6 Factors used to evaluate PbTe-based modules 24
Chapter 2 Motivation 27
Chapter 3 Experimental 28
3-1 Thermoelectric materials preparation 28
3-2 Electroless deposition 29
3-2-1 Electroless Co–P process 29
3-2-2 Electroless Ag process 30
3-3 Interfacial reaction 32
3-4 Contact resistance 33
3-5 Mechanical shear test 33
3-6 Thermoelectric properties 34
Chapter 4 Results and Discussion 36
4-1 Characterization of thermoelectric materials and electroless Co–P films 36
4-2 Interfacial reaction 39
4-2-1 Interfacial behavior of the Cu/n-PbTe and Ni/n-PbTe joints 39
4-2-2 Interfacial behavior of the Cu/Co–P/n-PbTe and Ni/Co–P/n-PbTe joints 47
4-2-3 Interfacial behavior of Cu/p-Pb0.6Sn0.4Te and Ni/p-Pb0.6Sn0.4Te joints 53
4-2-4 Interfacial behavior of Cu/Co–P/Ag/p-Pb0.6Sn0.4Te and Ni/Co–P/Ag/p- Pb0.6Sn0.4Te joints 62
4-3 Contact resistance 72
4-4 Mechanical test 75
4-4-1 Shear test of the n-PbTe module 75
4-4-2 Shear test of the p-Pb0.6Sn0.4Te module 78
4-5 Thermoelectric properties 81
4-5-1 Thermoelectric influence of the n-PbTe materials 81
4-5-2 Thermoelectric influence of the p-Pb0.6Sn0.4Te materials 86
Chapter 5 Conclusion 90
Chapter 6 Reference 92
?
參考文獻 [1] T. p. company., 再生能源發展概況, 2017. Available: http://www.taipower.com.tw/content/new_info/new_info-b31.aspx?LinkID=8
[2] M. Sato and J. Hansen, Energy consumption, 2017. Available: http://www.columbia.edu/~mhs119/EnergyConsump/
[3] L. L. N. Laboratory, Estimated energy use in 2013: 97.4 Quads, 2014. Available: https://flowcharts.llnl.gov/energy.html
[4] H. Hachiuma and K. Fukuda, Activities and future vision of Komatsu thermo modules, 2007.
[5] J. Brinkley, Thermoelectric energy harvesting advances through technological, material and device integration, 2017. Available: https://ww2.frost.com/news/press-releases/thermoelectric-energy-harvesting-advances-through-technological-material-and-device-integration
[6] T. Kajikawa, "Thermoelectric application for power generation in Japan", Advances in science and technology, Vol. 74, pp. 83-92, 2010.
[7] Q. H. Zhang, X. Y. Huang, S. Q. Bai et al., "Thermoelectric devices for power generation: recent progress and future challenges?", Adv. Eng. Mater., Vol. 18, pp. 194-213, 2016.
[8] G. J. Snyder and E. S. Toberer, "Complex thermoelectric materials", Nat Mater, Vol. 7, pp. 105-114, 2008.
[9] J. P. Heremans, M. S. Dresselhaus, L. E. Bell et al., "When thermoelectrics reached the nanoscale", Nature Nanotechnology, Vol. 8, p. 471, 2013.
[10] C. Han, Z. Li, and S. X. Dou, "Recent progress in thermoelectric materials", Chin. Sci. Bull., Vol. 59, pp. 2073-2091, 2014.
[11] M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus et al., "Perspectives on thermoelectrics: from fundamentals to device applications", Energy & Environmental Science, Vol. 5, pp. 5147-5162, 2012.
[12] N. Putra, Ardiyansyah, W. Sukyono et al., "The characterization of a cascade thermoelectric cooler in a cryosurgery device", Cryogenics, Vol. 50, pp. 759-764, 2010.
[13] W. G. J. H. M. v. Sark, "Feasibility of photovoltaic – thermoelectric hybrid modules", Applied Energy, Vol. 88, pp. 2785-2790, 2011.
[14] J. Li, B. Ma, R. Wang et al., "Study on a cooling system based on thermoelectric cooler for thermal management of high-power LEDs", Microelectronics Reliability, Vol. 51, pp. 2210-2215, 2011.
[15] M. Gillott, L. B. Jiang, and S. Riffat, "An investigation of thermoelectric cooling devices for small-scale space conditioning applications in buildings", Int. J. Energy Res., Vol. 34, pp. 776-786, 2010.
[16] S. B. Riffat and G. Qiu, "Comparative investigation of thermoelectric air-conditioners versus vapour compression and absorption air-conditioners", Appl. Therm. Eng., Vol. 24, pp. 1979-1993, 2004.
[17] D. L. Zhao and G. Tan, "A review of thermoelectric cooling: materials, modeling and applications", Appl. Therm. Eng., Vol. 66, pp. 15-24, 2014.
[18] A. D. LaLonde, Y. Pei, H. Wang et al., "Lead telluride alloy thermoelectrics", Mater. Today, Vol. 14, pp. 526-532, 2011.
[19] T. Kuroki, K. Kabeya, K. Makino et al., "Thermoelectric generation using waste heat in steel works", J. Electron. Mater., Vol. 43, pp. 2405-2410, 2014.
[20] S. Kumar, S. D. Heister, X. Xu et al., "Thermoelectric generators for automotive waste heat recovery systems part I: numerical modeling and baseline model analysis", J. Electron. Mater., Vol. 42, pp. 665-674, 2013.
[21] S. Kumar, S. D. Heister, X. Xu et al., "Thermoelectric generators for automotive waste heat recovery systems part II: parametric evaluation and topological studies", J. Electron. Mater., Vol. 42, pp. 944-955, 2013.
[22] R. Amatya and R. J. Ram, "Solar thermoelectric generator for micropower applications", J. Electron. Mater., Vol. 39, pp. 1735-1740, 2010.
[23] K. Qiu and A. C. S. Hayden, "A natural-gas-fired thermoelectric power generation system", J. Electron. Mater., Vol. 38, pp. 1315-1319, 2009.
[24] D. Champier, J. P. Bedecarrats, T. Kousksou et al., "Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove", Energy, Vol. 36, pp. 1518-1526, 2011.
[25] S. M. O’Shaughnessy, M. J. Deasy, C. E. Kinsella et al., "Small scale electricity generation from a portable biomass cookstove: prototype design and preliminary results", Applied Energy, Vol. 102, pp. 374-385, 2013.
[26] V. Leonov and R. J. M. Vullers, "Wearable electronics self-powered by using human body heat: The state of the art and the perspective", J. Renew. Sustain. Energy, Vol. 1, p. 14, 2009.
[27] F. Suarez, A. Nozariasbmarz, D. Vashaee et al., "Designing thermoelectric generators for self-powered wearable electronics", Energy & Environmental Science, Vol. 9, pp. 2099-2113, 2016.
[28] L. Yang, Z. G. Chen, M. S. Dargusch et al., "High Performance Thermoelectric Materials: Progress and Their Applications", Advanced Energy Materials, p. 1701797, 2017.
[29] J. R. Szczech, J. M. Higgins, and S. Jin, "Enhancement of the thermoelectric properties in nanoscale and nanostructured materials", J. Mater. Chem., Vol. 21, pp. 4037-4055, 2011.
[30] Z. H. Dughaish, "Lead telluride as a thermoelectric material for thermoelectric power generation", Physica B: Condensed Matter, Vol. 322, pp. 205-223, 2002.
[31] Y. Pei, H. Wang, and G. J. Snyder, "Band engineering of thermoelectric materials", Adv. Mater., Vol. 24, pp. 6125-6135, 2012.
[32] A. D. LaLonde, Y. Z. Pei, and G. J. Snyder, "Reevaluation of PbTe1-xIx as high performance n-type thermoelectric material", Energy & Environmental Science, Vol. 4, pp. 2090-2096, 2011.
[33] M. G. Kanatzidis, Q. Zhang, S. N. Girard et al., "Thermoelectrics compositions comprising nanoscale inclusions in a chalcogenide matrix", US patent, US8778214B2, 2011.
[34] F. Haass, "Doped lead tellurides for thermoelectric applications", US patent, 0084422, 2009.
[35] K. Biswas, J. He, I. D. Blum et al., "High-performance bulk thermoelectrics with all-scale hierarchical architectures", Nature, Vol. 489, pp. 414-418, 2012.
[36] B. Paul, P. K. Rawat, and P. Banerji, "Dramatic enhancement of thermoelectric power factor in PbTe:Cr co-doped with iodine", Appl. Phys. Lett., Vol. 98, p. 262101, 2011.
[37] Y. Pei, X. Shi, A. LaLonde et al., "Convergence of electronic bands for high performance bulk thermoelectrics", Nature, Vol. 473, pp. 66-69, 2011.
[38] Y. Gelbstein, Z. Dashevsky, and M. P. Dariel, "Powder metallurgical processing of functionally graded p-Pb1?xSnxTe materials for thermoelectric applications", Physica B: Condensed Matter, Vol. 391, pp. 256-265, 2007.
[39] A. D. LaLonde and P. D. Moran, "Synthesis and characterization of p-type Pb0.5Sn0.5Te thermoelectric power generation elements by mechanical alloying", J. Electron. Mater., Vol. 39, pp. 8-14, 2010.
[40] M. Orihashi, Y. Noda, L. Chen et al., "Effect of composition on the electrical properties and thermal conductivity of Pb1-xSnxTe", J. Jpn. Inst. Met., Vol. 63, pp. 1423-1428, 1999.
[41] M. Orihashi, Y. Noda, L. D. Chen et al., "Effect of tin content on thermoelectric properties of p-type lead tin telluride", J. Phys. Chem. Solids, Vol. 61, pp. 919-923, 2000.
[42] M. Orihashi, Y. Noda, L. D. Chen et al., "Effect of Sn content on the electrical properties and thermal conductivity of Pb1-xSnxTe", Mater. Trans. JIM, Vol. 41, pp. 1196-1201, 2000.
[43] A. K. Yadav, S. Singh, and G. Gupta, "Solar air-conditioning: design for a compressor-less system using Peltier effect", International Journal, Vol. 2, pp. 429-432, 2014.
[44] C. N. Chiu, C. H. Wang, and S. W. Chen, "Interfacial reactions in the Sn-Bi/Te couples", J. Electron. Mater., Vol. 37, pp. 40-44, 2007.
[45] C. H. Lee, W. T. Chen, and C. N. Liao, "Effect of antimony on vigorous interfacial reaction of Sn–Sb/Te couples", J. Alloys Compd., Vol. 509, pp. 5142-5146, 2011.
[46] C. N. Liao and Y. C. Huang, "Effect of Ag addition in Sn on growth of SnTe compound during reaction between molten solder and tellurium", J. Mater. Res., Vol. 25, pp. 391-395, 2011.
[47] C. N. Liao and C. H. Lee, "Suppression of vigorous liquid Sn/Te reactions by Sn–Cu solder alloys", J. Mater. Res., Vol. 23, pp. 3303-3308, 2011.
[48] T. Y. Lin, C. N. Liao, and A. T. Wu, "Evaluation of Diffusion Barrier Between Lead-Free Solder Systems and Thermoelectric Materials", J. Electron. Mater., Vol. 41, pp. 153-158, 2012.
[49] K. Ikoma, M. Munekiyo, K. Furuya et al., "Thermoelectric module and generator for gasoline engine vehicles," Seventeenth International Conference on Thermoelectrics. Proceedings ICT98 (Cat. No.98TH8365), pp. 464-467, 1998.
[50] K. T. Wojciechowski, R. Zybala, and R. Mania, "High temperature CoSb3–Cu junctions", Microelectronics Reliability, Vol. 51, pp. 1198-1202, 2011.
[51] Y. X. Gan and F. W. Dynys, "Joining highly conductive and oxidation resistant silver-based electrode materials to silicon for high temperature thermoelectric energy conversions", Mater. Chem. Phys., Vol. 138, pp. 342-349, 2013.
[52] K. Romanjek, S. Vesin, L. Aixala et al., "High-performance silicon–germanium-based thermoelectric modules for gas exhaust energy scavenging", J. Electron. Mater., Vol. 44, pp. 2192-2202, 2015.
[53] Y. S. Lee, S. J. Kim, B. G. Kim et al., "Research for brazing materials of high-temperature thermoelectric modules with CoSb3 thermoelectric materials", J. Electron. Mater., Vol. 46, pp. 3083-3088, 2016.
[54] S. W. Chen, A. H. Chu, and D. S.-H. Wong, "Interfacial reactions at the joints of CoSb3-based thermoelectric devices", J. Alloys Compd., Vol. 699, pp. 448-454, 2017.
[55] S. W. Chen, J. C. Wang, and L. C. Chen, "Interfacial reactions at the joints of PbTe thermoelectric modules using Ag-Ge braze", Intermetallics, Vol. 83, pp. 55-63, 2017.
[56] X. K. Hu, P. Jood, M. Ohta et al., "Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules", Energy & Environmental Science, Vol. 9, pp. 517-529, 2016.
[57] P. Ramm, M. J. Wolf, A. Klumpp et al., "Through silicon via technology - processes and reliability for wafer-level 3D system integration," 2008 58th Electronic Components and Technology Conference, pp. 841-846, 2008.
[58] D. Q. Yu, L. L. Yan, C. Lee et al., "Wafer-level hermetic bonding using Sn/In and Cu/Ti/Au metallization", IEEE Trans. Compon. Packaging Technol., Vol. 32, pp. 926-934, 2009.
[59] R. I. Made, C. L. Gan, L. L. Yan et al., "Study of low-temperature thermocompression bonding in Ag-In solder for packaging applications", J. Electron. Mater., Vol. 38, pp. 365-371, 2009.
[60] W. C. Welch, J. Chae, and K. Najafi, "Transfer of metal MEMS packages using a wafer-level solder transfer technique", IEEE Trans. Adv. Packag., Vol. 28, pp. 643-649, 2005.
[61] D. M. Jacobson and S. P. S. Sangha, "Novel application of diffusion soldering", Soldering & Surface Mount Technology, Vol. 8, p. 12, 1996.
[62] T. H. Chuang, W. T. Yeh, C. H. Chuang et al., "Improvement of bonding strength of a (Pb,Sn)Te–Cu contact manufactured in a low temperature SLID-bonding process", J. Alloys Compd., Vol. 613, pp. 46-54, 2014.
[63] C. L. Yang, H. J. Lai, J. D. Hwang et al., "Diffusion soldering of Pb-Doped GeTe thermoelectric modules with Cu electrodes using a thin-film Sn interlayer", J. Electron. Mater., Vol. 42, pp. 359-365, 2012.
[64] C. C. Li, S. J. Hsu, C. C. Lee et al., "Development of interconnection materials for Bi2Te3 and PbTe thermoelectric module by using SLID technique", pp. 1470-1476, 2015.
[65] T. Sui, J. F. Li, and S. Z. Jin, "Joining CoSb3 to metal surface of FGM electrode for thermoelectric modules by SPS", Key Eng. Mater., Vol. 368-372, pp. 1858-1861, 2008.
[66] J. de Boor, C. Gloanec, H. Kolb et al., "Fabrication and characterization of nickel contacts for magnesium silicide based thermoelectric generators", J. Alloys Compd., Vol. 632, pp. 348-353, 2015.
[67] J. F. Fan, L. D. Chen, S. Q. Bai et al., "Joining of Mo to CoSb3 by spark plasma sintering by inserting a Ti interlayer", Mater. Lett., Vol. 58, pp. 3876-3878, 2004.
[68] M. Orihashi, Y. Noda, L. Chen et al., "Ni/n-PbTe and Ni/p-Pb0.5Sn0.5Te joining by plasma activated sintering," Seventeenth International Conference on Thermoelectrics. Proceedings ICT98 (Cat. No.98TH8365), pp. 543-546, 1998.
[69] X. R. Ferreres, S. Aminorroaya Yamini, M. Nancarrow et al., "One-step bonding of Ni electrode to n-type PbTe — A step towards fabrication of thermoelectric generators", Materials & Design, Vol. 107, pp. 90-97, 2016.
[70] M. Weinstein and A. I. Mlavsky, "Bonding of lead telluride to pure iron electrodes", Rev. Sci. Instrum., Vol. 33, pp. 1119-1120, 1962.
[71] H. Xia, F. Drymiotis, C. L. Chen et al., "Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications", Journal of Materials Science, Vol. 49, pp. 1716-1723, 2013.
[72] H. Xia, F. Drymiotis, C.-L. Chen et al., "Bonding and high-temperature reliability of NiFeMo alloy/n-type PbTe joints for thermoelectric module applications", Journal of Materials Science, Vol. 50, pp. 2700-2708, 2015.
[73] H. Xia, C.-L. Chen, F. Drymiotis et al., "Interfacial reaction between Nb foil and n-type PbTe thermoelectric materials during thermoelectric contact fabrication", J. Electron. Mater., Vol. 43, pp. 4064-4069, 2014.
[74] C. C. Li, F. Drymiotis, L. L. Liao et al., "Silver as a highly effective bonding layer for lead telluride thermoelectric modules assembled by rapid hot-pressing", Energy Convers. Manage., Vol. 98, pp. 134-137, 2015.
[75] C. C. Li, F. Drymiotis, L. L. Liao et al., "Interfacial reactions between PbTe-based thermoelectric materials and Cu and Ag bonding materials", J. Mater. Chem. C, Vol. 3, pp. 10590-10596, 2015.
[76] L. C. Lo and A. T. Wu, "Interfacial reactions between diffusion barriers and thermoelectric materials under current stressing", J. Electron. Mater., Vol. 41, pp. 3325-3330, 2012.
[77] P. Y. Chien, C. H. Yeh, H. H. Hsu et al., "Polarity effect in a Sn3Ag0.5Cu/bismuth telluride thermoelectric system", J. Electron. Mater., Vol. 43, pp. 284-289, 2014.
[78] W. C. Lin, Y. S. Li, and A. T. Wu, "Study of Diffusion Barrier for Solder/n-Type Bi2Te3 and Bonding Strength for p- and n-Type Thermoelectric Modules", J. Electron. Mater., 2017.
[79] R. P. Gupta, O. D. Iyore, K. Xiong et al., "Interface characterization of cobalt contacts on bismuth selenium telluride for thermoelectric devices", Electrochem. Solid State Lett., Vol. 12, pp. H395-H397, 2009.
[80] C. Y. Ko and A. T. Wu, "Evaluation of Diffusion Barrier Between Pure Sn and Te", J. Electron. Mater., Vol. 41, pp. 3320-3324, 2012.
[81] W. L. Liu, S. H. Hsieh, T. K. Tsai et al., "Growth kinetics of electroless cobalt deposition by TEM", J. Electrochem. Soc., Vol. 151, pp. C680-C683, 2004.
[82] A. A. Aal, H. Barakat, and Z. A. Hamid, "Synthesis and characterization of electroless deposited Co-W-P thin films as diffusion barrier layer", Surface & Coatings Technology, Vol. 202, pp. 4591-4597, 2008.
[83] T. K. Tsai, S. S. Wu, C. S. Hsu et al., "Effect of phosphorus on the copper diffusion barrier properties of electroless CoWP films", Thin Solid Films, Vol. 519, pp. 4958-4962, 2011.
[84] Y. D. Yu, M. G. Li, G. Y. Wei et al., "Effects of pH values on electroless deposition of CoP films", Surf. Eng., Vol. 29, pp. 767-771, 2013.
[85] A. Kohn, M. Eizenberg, Y. Shacham-Diamand et al., "Characterization of electroless deposited Co(W,P) thin films for encapsulation of copper metallization", Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, Vol. 302, pp. 18-25, 2001.
[86] Y. Shacham-Diamand, Y. Sverdlov, and N. Petrov, Electroless deposition of thin-film cobalt-tungsten-phosphorus layers using tungsten phosphoric acid (H3[P(W3O10)4]) for ULSI and MEMS applications vol. 148, 2001.
[87] T. K. Tsai, S. S. Wu, W. L. Liu et al., "Electroless CoWP as a diffusion barrier between electroless copper and silicon", J. Electron. Mater., Vol. 36, pp. 1408-1414, 2007.
[88] H. Kind, A. M. Bittner, O. Cavalleri et al., "Electroless deposition of metal nanoislands on aminothiolate-functionalized Au(111) electrodes", J. Phys. Chem. B, Vol. 102, pp. 7582-7589, 1998.
[89] H. Nakano, T. Itabashi, and H. Akahoshi, "Electroless deposited cobalt-tungsten-boron capping barrier metal on damascene copper interconnection", J. Electrochem. Soc., Vol. 152, pp. C163-C166, 2005.
[90] S. Y. Chang, C. C. Wan, Y. Y. Wang et al., "Characterization of Pd-free electroless Co-based cap selectively deposited on Cu surface via borane-based reducing agent", Thin Solid Films, Vol. 515, pp. 1107-1111, 2006.
[91] H. C. Pan and T. E. Hsieh, "Diffusion barrier characteristics of electroless Co(W,P) thin films to lead-free SnAgCu solder", J. Electrochem. Soc., Vol. 158, pp. P123-P129, 2011.
[92] N. Lu, D. Yang, and L. Li, "Interfacial reaction between Sn–Ag–Cu solder and Co–P films with various microstructures", Acta Mater., Vol. 61, pp. 4581-4590, 2013.
[93] G. Y. Xu, C. C. Ge, Y. P. Gao et al., "Thermoelectric properties of n-type Bi2Te3-PbTe graded thermoelectric materials with different barriers", J. Univ. Sci. Technol. Beijing, Vol. 8, pp. 267-269, 2001.
[94] C. Hadjistassou, E. Kyriakides, and J. Georgiou, "Designing high efficiency segmented thermoelectric generators", Energy Convers. Manage., Vol. 66, pp. 165-172, 2013.
[95] B. A. Cook, T. E. Chan, G. Dezsi et al., "High-performance three-stage cascade thermoelectric devices with 20% efficiency", J. Electron. Mater., Vol. 44, pp. 1936-1942, 2015.
[96] S. LeBlanc, S. K. Yee, M. L. Scullin et al., "Material and manufacturing cost considerations for thermoelectrics", Renewable and Sustainable Energy Reviews, Vol. 32, pp. 313-327, 2014.
[97] W. Liu, H. Wang, L. Wang et al., "Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications", Journal of Materials Chemistry A, Vol. 1, p. 13093, 2013.
[98] C. N. Liao, C. H. Lee, and W. J. Chen, "Effect of interfacial compound formation on contact resistivity of soldered junctions between bismuth telluride-based thermoelements and copper", Electrochem. Solid State Lett., Vol. 10, pp. P23-P25, 2007.
[99] D. Zhao, X. Li, L. He et al., "High temperature reliability evaluation of CoSb3/electrode thermoelectric joints", Intermetallics, Vol. 17, pp. 136-141, 2009.
[100] D. Zhao, H. Geng, and X. Teng, "Fabrication and reliability evaluation of CoSb3/W–Cu thermoelectric element", J. Alloys Compd., Vol. 517, pp. 198-203, 2012.
[101] Y. Kim, G. Yoon, and S. H. Park, "Direct contact resistance evaluation of thermoelectric legs", Exp. Mech., Vol. 56, pp. 861-869, 2016.
[102] T. H. Chuang, H. J. Lin, C. H. Chuang et al., "Solid liquid interdiffusion bonding of (Pb, Sn)Te thermoelectric modules with Cu electrodes using a thin-film Sn interlayer", J. Electron. Mater., Vol. 43, pp. 4610-4618, 2014.
[103] M. Edwards, K. Brinkfeldt, U. Rusche et al., "The shear strength of nano-Ag sintered joints and the use of Ag interconnects in the design and manufacture of SiGe-based thermo-electric modules", Microelectronics Reliability, Vol. 55, pp. 722-732, 2015.
[104] A. Yusufu, K. Kurosaki, T. Sugahara et al., "Thermoelectric properties and microstructures of AgSbTe2-added p-type Pb0.16Ge0.84Te", Physica Status Solidi a-Applications and Materials Science, Vol. 209, pp. 167-170, 2012.
[105] A. Vaskelis, A. Jagminiene, R. Juskenas et al., "Structure of electroless silver coatings obtained using cobalt(II) as reducing agent", Surface & Coatings Technology, Vol. 82, pp. 165-168, 1996.
[106] E. Norkus, A. Vaskelis, A. Jagminiene et al., "Kinetics of electroless silver deposition using cobalt(II)-ammonia complex compounds as reducing agents", J. Appl. Electrochem., Vol. 31, pp. 1061-1066, 2001.
[107] H. J. Wu, L. D. Zhao, F. S. Zheng et al., "Broad temperature plateau for thermoelectric figure of merit ZT > 2 in phase-separated PbTe0.7S0.3", Nat. Commun., Vol. 5, p. 9, 2014.
[108] C. H. Wang, S. E. Huang, and C. W. Chiu, "Influence of the P content on phase formation in the interfacial reactions between Sn and electroless Co(P) metallization on Cu substrate", J. Alloys Compd., Vol. 619, pp. 474-480, 2015.
[109] C. H. Wang, S. E. Huang, and J. L. Liu, "Liquid-state interfacial reactions of Sn-Zn/Co couples at 250 degrees C", J. Electron. Mater., Vol. 41, pp. 3259-3265, 2012.
[110] A. Zhu, Y. Shacham-Diamand, and M. Teo, "Evaluation of the initial growth of electroless deposited Co(W,P) diffusion barrier thin film for Cu metallization", J. Solid State Chem., Vol. 179, pp. 4056-4065, 2006.
[111] P. Villars , A. Prince, and H. Okamoto, Handbook of ternary alloy phase diagrams: ASM International, 1995.
[112] C. Dong, "PowderX: windows-95-based program for powder X-ray diffraction data processing", J. Appl. Crystallogr., Vol. 32, p. 838, 1999.
[113] H. J. Deiseroth, F. Spirovski, C. Reiner et al., "Crystal structure of trinickel tin ditelluride, Ni3-xSnTe2 (x=0.13)", Z. Krist.-New Cryst. Struct., Vol. 222, pp. 169-170, 2007.
[114] I. Jandl, F. Boero, H. Ipser et al., "Phase equilibria and structural investigations of the general NiAs-type in the ternary system Ni-Sn-Te", Intermetallics, Vol. 46, pp. 199-210, 2014.
[115] Y. Pei, N. A. Heinz, A. LaLonde et al., "Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride", Energy & Environmental Science, Vol. 4, pp. 3640-3645, 2011.
[116] Y. Pei, J. Lensch-Falk, E. S. Toberer et al., "High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping", Adv. Funct. Mater., Vol. 21, pp. 241-249, 2011.
[117] Y. Pei, A. F. May, and G. J. Snyder, "Self-tuning the carrier concentration of PbTe/Ag2Te composites with excess Ag for high thermoelectric performance", Advanced Energy Materials, Vol. 1, pp. 291-296, 2011.
[118] C. Long, Y. Yan, J. Zhang et al., "New integration technology for PbTe element," 2006 25th International Conference on Thermoelectrics, pp. 386-389, 2006.
[119] F. Li, X. Huang, W. Jiang et al., "Interface microstructure and performance of Sb contacts in bismuth telluride-based thermoelectric elements", J. Electron. Mater., Vol. 42, pp. 1219-1224, 2013.
[120] M. S. El-Genk and H. H. Saber, "High efficiency segmented thermoelectric unicouple for operation between 973 and 300 K", Energy Convers. Manage., Vol. 44, pp. 1069-1088, 2003.
[121] Y. S. Chien, Y. P. Huang, R. N. Tzeng et al., "Low temperature (<180 oC) wafer-level and chip-level In-to-Cu and Cu-to-Cu bonding for 3D integration," 2013 IEEE 63rd Electronic Components and Technology Conference, pp. 1146-1152, 2013.
[122] H. Chen, Y. L. Tsai, Y. T. Chang et al., "Effect of massive spalling on mechanical strength of solder joints in Pb-free solder reflowed on Co-based surface finishes", J. Alloys Compd., Vol. 671, pp. 100-108, 2016.
[123] C. F. Tseng and J. G. Duh, "Correlation between microstructure evolution and mechanical strength in the Sn–3.0Ag–0.5Cu/ENEPIG solder joint", Materials Science and Engineering: A, Vol. 580, pp. 169-174, 2013.
[124] W. Tamura, A. Yasuda, K. Suto et al., "Properties of Bi-doped PbTe layers grown by liquid phase epitaxy under controlled Te vapor pressure", J. Electron. Mater., Vol. 32, pp. 1079-1084, 2003.
指導教授 吳子嘉(Albert T. Wu) 審核日期 2018-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明