博碩士論文 102324045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:44.192.94.177
姓名 吳允中(Yun-chung Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 發展載藥電紡聚乳酸/多壁奈米碳管/聚乙二醇纖維
(The development of drug-loaded polylactic acid/multi-walled carbon nanotubes/polyethylene glycol fibers)
相關論文
★ 利用穿膜胜肽改善帶正電高分子之轉染效率★ 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化
★ 以電刺激增進骨髓基質細胞骨分化之最佳化探討★ 利用電場控制導電性高分子以進行基因於聚電解質多層膜的組裝
★ 以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究★ 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染
★ 電場對於複合奈米絲進行原位基因傳送之影響★ 利用電場調控聚電解質多層膜的釋放 以應用於基因輸送
★ 利用寡聚精胺酸促進去氧寡核苷酸輸送★ 利用聚己內酯/褐藻酸鈉之複合電紡絲擴增癌症幹細胞
★ 以二元體形式之Indolicidin 應用於去氧寡核苷酸之輸送★ Indolicidin之色胺酸殘基對於轉染效率的影響
★ Indolicidin之二聚體形式對輸送去氧寡核?酸的影響★ 搭建可提供電刺激與機械刺激之生物反應器
★ 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體★ 開發促進傷口癒合之複合敷料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究嘗試發展載藥複合電紡纖維。首先我們將不同比例的奈米碳管摻混

入聚乳酸以強化電紡纖維,藉由加入導電的奈米碳管,可以得到細且均一直徑

的奈米纖維,雖然過高奈米碳管的添加可能會因為碳管的聚集降低纖維機械強

度,但我們發現含有0.5 wt%奈米碳管的聚乳酸纖維(0.5 CNT)有著最出色的機

械強度表現。為了調控藥物的釋放行為,我們將不同含量的親水性聚乙二醇摻

混入0.5 CNT 纖維。透過接觸角、FTIR 與XPS 實驗,確認聚乙二醇有確實摻

混入纖維內,雖然PEG 的添加會降低機械強度,但整體而言仍優於純聚乳酸纖

維。且PEG 的加入可有效降低纖維的Tg 而增進纖維延展性。而細胞培養實驗

顯示這些纖維絲均有良好的生物適合性,可有利於細胞貼附生長。最後,我們

將能夠誘導成骨分化的Dexamethasone(Dex)藥物載入纖維中,並利用FTIR 與

XPS 確認藥物有裝載入纖維。其中XPS 的結果顯示奈米碳管的添加可有利於使

Dex 均勻分布於纖維整體。而在藥物釋放曲線中,可以發現聚乙二醇摻混入纖

維後能提高Dex 釋放速率。這些結果顯示,載藥聚乳酸/多壁奈米碳管/聚乙二

醇複合纖維不僅提升了機械強度,且能調控藥物釋放行為,對於骨組織修復與

再生的應用極具潛力。

關鍵字:電紡絲、載藥支架
摘要(英) In this study, composite electrospun fibers were fabricated to develop drug loaded

scaffolds. Firstly, different ratios of multi-walled carbon nanotubes (MWCNTs) were

incorporated to polylactic acid (PLA) to strengthen electrospun fibers. Compared to

thick PLA with random diameters, the use of MWCNTs resulted in uniform and thin

fibers due to their good conductivity. Although excess MWCNTs in polymer may

aggregate together, fibers with 0.5 wt% MWCNTs (0.5 CNT) performed the best

mechanical property. To modulate drug release behavior, different ratios of

hydrophilic polyethylene glycol (PEG) were applied to 0.5 CNT. The PEG

incorporation was examined by water contact angle, FTIR, and XPS analyses.

Although the mechanical strengths of PEG containing fibers decreased with PEG

ratios, they were still higher than that of the PLA only fibers. In addition, incorporated

PEG reduced Tg of spun fibers and enhanced ductility. The cell culture experiments

suggested that fabricated fibers all demonstrated good biocompatibility. Finally,

dexamethasone (Dex), an osteogenic inducer, was loaded to PLA/MWCNT/PGE

fibers and was confirmed by FTIR and XPS. The XPS results suggested that loaded

Dex mainly stayed the surfaces of PLA fibers, whereas even distributed in MWCNTs

containing fibers. Drug release experiments demonstrated that released Dex was

manipulated by PEG ratios that the more PEG in fibers, the faster Dex released. These

properties indicated that our developed drug-loaded PLA/MWCNT/PEG fibers not

only promoted mechanical strength, but also regulated drug release behavior, thus

should be potential to bone tissue regeneration application.

Key words:electrospun、drug-loaded scaffolds
關鍵字(中) ★ 電紡絲
★ 載藥支架
關鍵字(英)
論文目次 摘要................................................................................................................................. I

Abstract .......................................................................................................................... II

致謝............................................................................................................................... III

目錄...............................................................................................................................IV

圖目錄...........................................................................................................................VI

表目錄........................................................................................................................... IX

第一章 緒論................................................................................................................ 1

1-1 背景................................................................................................................ 1

1-2 實驗目的........................................................................................................ 2

第二章 文獻回顧.......................................................................................................... 4

2-1 組織工程 ........................................................................................................ 4

2-2 生物可降解性材料應用於組織工程 ............................................................ 6

2-3 電紡絲 ............................................................................................................ 9

2-3-1 電紡絲簡介與原理 ............................................................................. 9

2-3-2 電紡絲於組織工程之應用 ............................................................... 12

2-3-3 聚乳酸電紡纖維應用絲於組織工程 ............................................... 15

2-4 電紡絲應用於藥物釋放 .............................................................................. 16

2-5 聚乙二醇作為改質材料 .............................................................................. 18

2-6 奈米碳管 ...................................................................................................... 21

2-6-1 奈米碳管簡介 ................................................................................... 21

2-6-2 奈米碳管應用於材料的挑戰 ........................................................... 22

2-6-3 奈米碳管應用於組織工程 ............................................................... 23

2-7 幹細胞 .......................................................................................................... 27

2-7-1 間葉幹細胞 ....................................................................................... 28

2-8 Dexamethasone .............................................................................................. 29

2-8-1 Dexamethasone 藥物釋放研究 ......................................................... 30

第三章 材料與方法.................................................................................................... 32

3-1 實驗藥品 ...................................................................................................... 32

3-2 實驗儀器 ...................................................................................................... 34

3-3 實驗方法 ...................................................................................................... 36

3-3-1 電紡絲溶液製備 ............................................................................... 36

3-3-1-1 奈米碳管分散........................................................................ 36

3-3-1-2 高分子電紡溶液製備............................................................ 37

3-3-2 電紡絲纖維製備 ............................................................................... 39

3-3-3 電紡絲收集量量測 ............................................................................ 40

3-3-4 纖維材料分析實驗 ........................................................................... 40

V

3-3-4-1 纖維之掃描式顯微鏡(SEM)樣本製備 ................................. 40

3-3-4-2 降解後纖維之掃描式顯微鏡(SEM)樣本製備 ..................... 40

3-3-4-3 纖維機械性質檢測................................................................ 41

3-3-4-4 纖維接觸角測定.................................................................... 42

3-3-4-5 纖維FTIR-ATR 分析 ............................................................ 42

3-3-4-6 纖維熱分析(差示掃描量熱儀)........................................ 42

3-3-4-7 纖維電子能譜儀分析(ESCA) ..................................... 42

3-3-5 纖維藥物釋放行為檢測 ................................................................... 43

3-3-6 生物實驗 ........................................................................................... 43

3-3-6-1 生物實驗相關溶液調配........................................................ 43

3-3-6-3 細胞培養................................................................................ 44

3-3-6-4 細胞生長於纖維上之SEM 樣本製備 ................................. 44

3-3-6-5 細胞生長於纖維上的MTT 活性檢測 ................................. 45

第四章 結果與討論.................................................................................................... 46

4-1 奈米碳管改質電紡纖維 ............................................................................... 46

4-1-1 奈米碳管對纖維型態影響 ............................................................... 46

4-1-2 奈米碳管改善機械強度 ................................................................... 49

4-2 聚乙二醇改質電紡纖維 ............................................................................... 50

4-2-1 聚乙二醇添加影響纖維型態 ........................................................... 51

4-2-2 聚乙二醇加入纖維後物化性質改變 ............................................... 53

4-2-2-1 纖維表面接觸角.................................................................. 53

4-2-2-2 纖維傅立葉紅外線(FTIR-ATR)光譜 ................................. 54

4-2-2-3 纖維電子能譜儀元素分析(XPS)........................................ 56

4-2-2-4 聚乙二醇加入後纖維機械性質檢測.................................. 59

4-2-2-5 纖維熱分析行為.................................................................. 60

4-2-3 纖維降解特性 ................................................................................... 62

4-3 複合纖維的生物適合性 .............................................................................. 65

4-3-1 細胞於纖維生長型態 ....................................................................... 65

4-3-2 細胞MTT 活性分析 ........................................................................ 67

4-4 載藥電紡纖維 ............................................................................................... 69

4-4-1 載藥纖維傅立葉紅外線(FTIR-ATR)光譜 ....................................... 69

4-4-2 載藥纖維電子能譜儀元素分析(XPS) ............................................. 71

4-4-3 藥物釋放行為 ................................................................................... 75

第五章 結論................................................................................................................ 79

第六章 參考資料........................................................................................................ 81
參考文獻 Nerlich, A.G., et al., Ancient Egyptian prosthesis of the big toe. The Lancet,

2000. 356(9248): p. 2176-2179.

2. Heslop, B.F., I.M. Zeiss, and N. Nisbet, Studies on transference of bone: I. A

comparison of autologous and homologous bone implants with reference to

osteocyte survival, osteogenesis and host reaction. British journal of

experimental pathology, 1960. 41(3): p. 269.

3. Hench, L.L., Bioceramics: from concept to clinic. Journal of the American

Ceramic Society, 1991. 74(7): p. 1487-1510.

4. Arrington, E.D., et al., Complications of iliac crest bone graft harvesting.

Clinical orthopaedics and related research, 1996. 329: p. 300-309.

5. Service, R.F., Tissue engineers build new bone. Science (New York, NY), 2000.

289(5484): p. 1498.

6. 李宣書, 淺談組織工程. 物理雙月刊, 2001. 24 卷(3 期): p. 431-435.

7. Meinel, L., et al., Bone tissue engineering using human mesenchymal stem

cells: effects of scaffold material and medium flow. Annals of biomedical

engineering, 2004. 32(1): p. 112-122.

8. Yoshimoto, H., et al., A biodegradable nanofiber scaffold by electrospinning

and its potential for bone tissue engineering. Biomaterials, 2003. 24(12): p.

2077-2082.

9. Shin, M., H. Yoshimoto, and J.P. Vacanti, In vivo bone tissue engineering using

mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue

engineering, 2004. 10(1-2): p. 33-41.

10. Luo, Y., et al., Enhanced proliferation and osteogenic differentiation of

mesenchymal stem cells on graphene oxide-incorporated electrospun poly

(lactic-co-glycolic acid) nanofibrous mats. ACS applied materials & interfaces,

2015. 7(11): p. 6331-6339.

11. Nguyen, L.T., et al., Electrospun poly (L-lactic acid) nanofibres loaded with

dexamethasone to induce osteogenic differentiation of human mesenchymal

stem cells. Journal of Biomaterials Science, Polymer Edition, 2012. 23(14): p.

1771-1791.

12. Martins, A., et al., Osteogenic induction of hBMSCs by electrospun scaffolds

with dexamethasone release functionality. Biomaterials, 2010. 31(22): p.

5875-5885.

13. Ding, S., et al., Synergistic effect of released dexamethasone and surface

82

nanoroughness on mesenchymal stem cell differentiation. Biomaterials

Science, 2013. 1(10): p. 1091-1100.

14. Li, L., et al., Controlled dual delivery of BMP-2 and dexamethasone by

nanoparticle-embedded electrospun nanofibers for the efficient repair of

critical-sized rat calvarial defect. Biomaterials, 2015. 37: p. 218-229.

15. Meaney, D.F., Mechanical properties of implantable biomaterials. Clinics in

podiatric medicine and surgery, 1995. 12(3): p. 363-384.

16. Gogolewski, S., Bioresorbable polymers in trauma and bone surgery. Injury,

2000. 31: p. D28-D32.

17. Burdick, J.A., et al., An initial investigation of photocurable three-dimensional

lactic acid based scaffolds in a critical-sized cranial defect. Biomaterials, 2003.

24(9): p. 1613-1620.

18. Sen, R., et al., Preparation of single-walled carbon nanotube reinforced

polystyrene and polyurethane nanofibers and membranes by electrospinning.

Nano letters, 2004. 4(3): p. 459-464.

19. Langer, R. and J.P. Vacanti, Tissue Engineering. Science, 1993. 260(5110): p.

920-926.

20. Lannutti, J., et al., Electrospinning for tissue engineering scaffolds. Materials

Science and Engineering: C, 2007. 27(3): p. 504-509.

21. Singh, M., C. Berkland, and M.S. Detamore, Strategies and applications for

incorporating physical and chemical signal gradients in tissue engineering.

Tissue Engineering Part B: Reviews, 2008. 14(4): p. 341-366.

22. Lee, J.Y., et al., Polypyrrole-coated electrospun PLGA nanofibers for neural

tissue applications. Biomaterials, 2009. 30(26): p. 4325-4335.

23. Agrawal, C. and R.B. Ray, Biodegradable polymeric scaffolds for

musculoskeletal tissue engineering. Journal of biomedical materials research,

2001. 55(2): p. 141-150.

24. Drury, J.L. and D.J. Mooney, Hydrogels for tissue engineering: scaffold design

variables and applications. Biomaterials, 2003. 24(24): p. 4337-4351.

25. Cen, L., et al., Collagen tissue engineering: development of novel biomaterials

and applications. Pediatric research, 2008. 63(5): p. 492-496.

26. Croisier, F. and C. Jérôme, Chitosan-based biomaterials for tissue engineering.

European Polymer Journal, 2013. 49(4): p. 780-792.

27. Chu, C.R., et al., Articular cartilage repair using allogeneic

perichondrocyteseeded biodegradable porous polylactic acid (PLA): A tissueengineering

study. Journal of biomedical materials research, 1995. 29(9): p.

1147-1154.

28. Williams, J.M., et al., Bone tissue engineering using polycaprolactone

83

scaffolds fabricated via selective laser sintering. Biomaterials, 2005. 26(23): p.

4817-4827.

29. Boland, E.D., et al., Tailoring tissue engineering scaffolds using electrostatic

processing techniques: a study of poly (glycolic acid) electrospinning. Journal

of Macromolecular Science, Part A, 2001. 38(12): p. 1231-1243.

30. Bhattarai, S.R., et al., Novel biodegradable electrospun membrane: scaffold

for tissue engineering. Biomaterials, 2004. 25(13): p. 2595-2602.

31. He, W., et al., Fabrication of collagen-coated biodegradable polymer

nanofiber mesh and its potential for endothelial cells growth. Biomaterials,

2005. 26(36): p. 7606-7615.

32. Park, H., et al., Delivery of TGF-β1 and chondrocytes via injectable,

biodegradable hydrogels for cartilage tissue engineering applications.

Biomaterials, 2005. 26(34): p. 7095-7103.

33. Gilbert, W., De magnete. 1958: Courier Corporation.

34. Anton, F., Process and apparatus for preparing artificial threads. 1934, Google

Patents.

35. Anton, F., Method and apparatus for spinning. 1944, Google Patents.

36. Reneker, D.H. and I. Chun, Nanometre diameter fibres of polymer, produced

by electrospinning. Nanotechnology, 1996. 7(3): p. 216.

37. Li, D. and Y. Xia, Electrospinning of nanofibers: reinventing the wheel?

Advanced materials, 2004. 16(14): p. 1151-1170.

38. Taylor, G. and A. McEwan, The stability of a horizontal fluid interface in a

vertical electric field. Journal of Fluid Mechanics, 1965. 22(01): p. 1-15.

39. Gatford, J. How the distribution of charge in the fibre changes as the fibre

dries during flight

Available from:

https://en.wikipedia.org/wiki/Electrospinning#/media/File:Electrospun_fibre

_drying.jpg.

40. Gatford, J. Diagram showing fibre formation by electrospinning. 2008;

Available from:

https://commons.wikimedia.org/wiki/File:Electrospinning_Diagram.jpg#/med

ia/File:Electrospinning_Diagram.jpg.

41. Chen, M.-C., Y.-C. Sun, and Y.-H. Chen, Electrically conductive nanofibers with

highly oriented structures and their potential application in skeletal muscle

tissue engineering. Acta biomaterialia, 2013. 9(3): p. 5562-5572.

42. Ku, S.H., S.H. Lee, and C.B. Park, Synergic effects of nanofiber alignment and

electroactivity on myoblast differentiation. Biomaterials, 2012. 33(26): p.

6098-6104.

84

43. B, A., et al., olecular biology of the cell. 1994: p. 971-975.

44. Li, W.J., et al., Electrospun nanofibrous structure: a novel scaffold for tissue

engineering. Journal of biomedical materials research, 2002. 60(4): p. 613-

621.

45. Kai, D., et al., Polypyrrole‐contained electrospun conductive nanofibrous

membranes for cardiac tissue engineering. Journal of Biomedical Materials

Research Part A, 2011. 99(3): p. 376-385.

46. Drumright, R.E., P.R. Gruber, and D.E. Henton, Polylactic acid technology.

Advanced materials, 2000. 12(23): p. 1841-1846.

47. Xiao, L., et al., Poly (lactic acid)-based biomaterials: synthesis, modification

and applications. 2012: INTECH Open Access Publisher.

48. Ji, W., et al., Bioactive electrospun scaffolds delivering growth factors and

genes for tissue engineering applications. Pharmaceutical research, 2011.

28(6): p. 1259-1272.

49. 胡哲誠, 電紡絲製備褐藻酸鈉/聚己內脂之奈米複合纖維進行原為轉染.

國立中央大學, 2013. 碩士論文.

50. Kim, H.S. and H.S. Yoo, MMPs-responsive release of DNA from electrospun

nanofibrous matrix for local gene therapy: in vitro and in vivo evaluation.

Journal of Controlled Release, 2010. 145(3): p. 264-271.

51. Sun, Z., et al., Compound core-shell polymer nanofibers by co-electrospinning.

Advanced materials, 2003. 15(22): p. 1929-1932.

52. Liu, J.J., et al., Peripheral nerve regeneration using composite poly (lactic acidcaprolactone)/

nerve growth factor conduits prepared by coaxial

electrospinning. Journal of biomedical materials research Part A, 2011. 96(1):

p. 13-20.

53. Li, Y.-F., et al., Ultraporous interweaving electrospun microfibers from PCL–

PEO binary blends and their inflammatory responses. Nanoscale, 2014. 6(6):

p. 3392-3402.

54. Liao, I., S. Chew, and K. Leong, Aligned core-shell nanofibers delivering

bioactive proteins. Nanomedicine, 2006: p. 465-471

55. Madani, S.Y., A. Mandel, and A.M. Seifalian, A concise review of carbon

nanotube′s toxicology. Nano reviews, 2013. 4.

56. Coleman, J.N., U. Khan, and Y.K. Gun′ko, Mechanical reinforcement of

polymers using carbon nanotubes. Advanced Materials, 2006. 18(6): p. 689-

706.

57. Spitalsky, Z., et al., Carbon nanotube–polymer composites: chemistry,

processing, mechanical and electrical properties. Progress in polymer science,

85

2010. 35(3): p. 357-401.

58. Cheng, H.K.F., et al., Current advances in the carbon nanotube/thermotropic

main-chain liquid crystalline polymer nanocomposites and their blends.

Polymers, 2012. 4(2): p. 889-912.

59. Huang, Y.Y. and E.M. Terentjev, Dispersion of carbon nanotubes: mixing,

sonication, stabilization, and composite properties. Polymers, 2012. 4(1): p.

275-295.

60. Xiao, Y., T. Gong, and S. Zhou, The functionalization of multi-walled carbon

nanotubes by in situ deposition of hydroxyapatite. Biomaterials, 2010. 31(19):

p. 5182-5190.

61. Im, J.S., S.-J. Park, and Y.-S. Lee, The metal–carbon–fluorine system for

improving hydrogen storage by using metal and fluorine with different levels

of electronegativity. International Journal of Hydrogen Energy, 2009. 34(3): p.

1423-1428.

62. Sae-Khow, O. and S. Mitra, Fabrication and characterization of carbon

nanotubes immobilized in porous polymeric membranes. J. Mater. Chem.,

2009. 19(22): p. 3713-3718.

63. Liao, G.-Y., et al., Electrospun aligned PLLA/PCL/functionalised multiwalled

carbon nanotube composite fibrous membranes and their bio/mechanical

properties. Composites Science and Technology, 2012. 72(2): p. 248-255.

64. Namgung, S., et al., Fibronectin–Carbon‐Nanotube Hybrid Nanostructures for

Controlled Cell Growth. Small, 2011. 7(1): p. 56-61.

65. Xu, B., et al., Carbon nanotube array inducing osteogenic differentiation of

human mesenchymal stem cells. Materials Science and Engineering: C, 2015.

51: p. 182-188.

66. Reya, T., et al., Stem cells, cancer, and cancer stem cells. nature, 2001.

414(6859): p. 105-111.

67. Chapman, A.R., et al. Stem cell research and applications: monitoring the

frontiers of biomedical research. 1999. American Association for the

Advancement of Science.

68. Leeper, N.J., A.L. Hunter, and J.P. Cooke, Stem cell therapy for vascular

regeneration adult, embryonic, and induced pluripotent stem cells.

Circulation, 2010. 122(5): p. 517-526.

69. Minguell, J.J., A. Erices, and P. Conget, Mesenchymal stem cells. Experimental

Biology and Medicine, 2001. 226(6): p. 507-520.

70. Caplan, A.I. and S.P. Bruder, Mesenchymal stem cells: building blocks for

molecular medicine in the 21st century. Trends in molecular medicine, 2001.

7(6): p. 259-264.

86

71. Jaiswal, N., et al., Osteogenic differentiation of purified, culture‐expanded

human mesenchymal stem cells in vitro. Journal of cellular biochemistry,

1997. 64(2): p. 295-312.

72. Weaver, C.L., et al., Electrically controlled drug delivery from graphene oxide

nanocomposite films. ACS nano, 2014. 8(2): p. 1834-1843.

73. Shao, S., et al., Osteoblast function on electrically conductive electrospun

PLA/MWCNTs nanofibers. Biomaterials, 2011. 32(11): p. 2821-2833.

74. You, Y., et al., In vitro degradation behavior of electrospun polyglycolide,

polylactide, and poly (lactide‐co‐glycolide). Journal of Applied Polymer

Science, 2005. 95(2): p. 193-200.

75. McCullen, S.D., et al., Development, optimization, and characterization of

electrospun poly (lactic acid) nanofibers containing multi‐walled carbon

nanotubes. Journal of applied polymer science, 2007. 105(3): p. 1668-1678.

76. Zong, X., et al., Structure and process relationship of electrospun

bioabsorbable nanofiber membranes. Polymer, 2002. 43(16): p. 4403-4412.

77. Yang, F., et al., Electrospinning of nano/micro scale poly (L-lactic acid) aligned

fibers and their potential in neural tissue engineering. Biomaterials, 2005.

26(15): p. 2603-2610.

78. Meng, Z., et al., Fabrication and characterization of three-dimensional

nanofiber membrance of PCL–MWCNTs by electrospinning. Materials Science

and Engineering: C, 2010. 30(7): p. 1014-1021.

79. Li, H., et al., Super‐“Amphiphobic” Aligned Carbon Nanotube Films.

Angewandte Chemie International Edition, 2001. 40(9): p. 1743-1746.

80. ISU MatE453/MSE 553 - Lab 3 - FTIR. Available from:

https://sites.google.com/site/isumate453lab3group8/.

81. Shameli, K., et al., Synthesis and characterization of polyethylene glycol

mediated silver nanoparticles by the green method. International journal of

molecular sciences, 2012. 13(6): p. 6639-6650.

82. López, G.P., D.G. Castner, and B.D. Ratner, XPS O 1s binding energies for

polymers containing hydroxyl, ether, ketone and ester groups. Surface and

interface analysis, 1991. 17(5): p. 267-272.

83. Jacobsen, S. and H.-G. Fritz, Plasticizing polylactide—the effect of different

plasticizers on the mechanical properties. Polymer Engineering & Science,

1999. 39(7): p. 1303-1310.

84. Wu, D., et al., Crystallization and Biodegradation of Polylactide/Carbon

Nanotube Composites. Polymer Engineering and Science, 2010. 50(9): p.

1721-1733.

85. Nakafuku, C. and M. Sakoda, Melting and crystallization of poly (L-lactic acid)

87

and poly (ethylene oxide) binary mixture. Polymer journal, 1993. 25(9): p.

909-917.

86. Pluta, M., Morphology and properties of polylactide modified by thermal

treatment, filling with layered silicates and plasticization. Polymer, 2004.

45(24): p. 8239-8251.

87. Ogata, N., et al., Structure and thermal/mechanical properties of poly (llactide)‐

clay blend. Journal of Polymer Science Part B: Polymer Physics, 1997.

35(2): p. 389-396.

88. Baker, B.M., et al., The potential to improve cell infiltration in composite fiberaligned

electrospun scaffolds by the selective removal of sacrificial fibers.

Biomaterials, 2008. 29(15): p. 2348-2358.

89. Nam, J., et al., Improved cellular infiltration in electrospun fiber via

engineered porosity. Tissue engineering, 2007. 13(9): p. 2249-2257.

90. Rodrigues, L.B., et al., In vitro release and characterization of chitosan films as

dexamethasone carrier. International Journal of Pharmaceutics, 2009. 368(1):

p. 1-6.

91. Wadhwa, R., C.F. Lagenaur, and X.T. Cui, Electrochemically controlled release

of dexamethasone from conducting polymer polypyrrole coated electrode.

Journal of Controlled Release, 2006. 110(3): p. 531-541.

92. Temenoff, J.S. and A.G. Mikos, Biomaterials: The intersection of biology and

materials science. Introduction to surface characterization. 2008.

93. Shao, S., et al., Controlled green tea polyphenols release from electrospun

PCL/MWCNTs composite nanofibers. International journal of pharmaceutics,

2011. 421(2): p. 310-320.
指導教授 胡威文 審核日期 2015-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明