博碩士論文 102324046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.129.70.157
姓名 李岳承(Yueh-Chen Lee)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究
★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究★ 尖針狀鈷矽化物/矽單晶異質奈米線陣列結構之製備及其性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究分為兩大部分,第一部分為在透明基材上製備抗反射陽極氧化鋁膜,探討不同陽極氧化鋁膜之參數在玻璃與藍寶石基材整體穿透率關係;第二部分則為使用50 nm 之自製陽極氧化鋁模板,並結合電化學沉積法製備出具有雙晶結構銅金屬線。

本研究在透明基材上製備抗反射陽極氧化鋁膜,可藉由孔洞大小調整陽極氧化鋁膜之等效折射率,與利用第一次陽極處理時間與蝕刻時間控制薄膜厚度,可獲得在玻璃與藍寶石基材上陽極氧化鋁膜之最佳參數,使整體透明基材之穿透率有效的提升,達到反射層效果。除此之外,也利用陽極處理與孔洞蝕刻交互進行多次的陽極處理,可對孔洞修飾成錐狀結構,成功製備出類似於蛾眼結構之抗反射膜,達到陽極氧化鋁膜之等效折射率會沿著深度方向成連續變化,而大幅提升透明基材的穿透率。

本研究利用自製的陽極氧化鋁模板結合電化學沉積法進行電鍍,可鍍製直徑約為50奈米且具有雙晶結構的一維銅金屬奈米線,其奈米線的深寬比可高達1200,本研究將調整各種實驗參數,如通電形式、溫度與鬆弛時間等,並利用TEM觀察在不同電鍍參數下的雙晶晶面密度的變化。

摘要(英) There are two parts in this study. The first part is to fabricate antireflection anodic aluminum oxide (AAO) film on a transparent substrate, discussing the total transmittance relationship between glass and sapphire substrates with different parameters of AAO film; the second part is to fabricate Cu nanowires with twinned structures by combining the AAO template and electrochemical deposition technique.

In this study, the total transmittance is determined by the effective refractive index and thickness of AAO film. The effective refractive index can be controlled by pore size, and the thickness can be controlled by the first anodizing time and etching time. As we obtain the optimal parameters, the total transmittance will be effectively promoted. Moreover, the pore of AAO film can be modified to the cone structure by repeated anodizing process and etching process, and we can obtain a moth-eye structure on AAO film. The total transmittance is significantly promoted by the gradual change of the effective refractive index in depth direction.

On the other hand, we fabricate Cu nanowires with twinned structures by combining the AAO template and electrodeposition technique. The diameter of twinned Cu nanowires is about 50 nm, and the aspect ratio is up to 1200. Furthermore, we observe the density change of twins formed in the Cu nanowires under different experimental parameters and electrodeposition conditions by TEM analysis.

關鍵字(中) ★ 陽極氧化鋁
★ 抗反射
★ 雙晶銅
關鍵字(英)
論文目次 第一章 簡介 1

1-1 前言 4

1-2 光學薄膜之抗反射層理論…………………………………………………………….5

1-3陽極氧化鋁膜…………………..……………………………………………………3

1-4 在透明基材上製備抗反射陽極氧化鋁膜……………………………………………...8

1-5 一微奈米線結構……………………………………………………………………...9

1-6 雙晶銅金屬 ………………………………………………………………..9

1-7 研究動機及目標………………………………………………………………………...11

第二章 實驗步驟及儀器設備……………………...…………………………………..........12

2-1在透明基材上製備抗反射陽極氧化鋁膜………………………………………...12

2-1-1 透明基材試片清洗……………………………………...………….……12

2-1-2 濺鍍沉積鋁薄膜………………...………...……………………………12

2-1-3 製備試片工作電極……………………………………...………….……12

2-1-4 製備抗反射陽極氧化鋁膜……………………………...………….……13

2-2 陽極氧化鋁模板製備一維銅金屬奈米線..……..…………………………………….14

2-2-1陽極氧化鋁模板之製程…………………………………………..............14

2-2-2電化學沉積法製備一維雙晶銅金屬奈米線………………………………..15

2-3 實驗設備………………………………………………………………………….16

2-3-1 直流式真空濺鍍系統…….………….……………....………………………16

2-3-2 陽極氧化鋁膜製備系統…………………………....………………………16

2-3-3 電鍍沉積系統…………………………………………………………………16

2-3-4 退火爐系統……………………………………………………………………16

2-4 儀器分析實驗………………………………………………………………………...17

2-4-1 掃描式電子顯微鏡……………………………………………………………17

2-4-2 穿透式電子顯微鏡…………………………………………………………....17

2-4-3 高分辨穿透式電子顯微鏡…………...………....…………………………….17

2-4-4 原子力顯微鏡…………………………....……………………………………18

2-4-5 紫外光-可見光光譜儀...………………………………………………………18

2-4-6 X光結晶繞射分析…......…………………….………………………………19

第三章 結果與討論………………………………………………………………………….20

3-1 在玻璃基材上製備陽極氧化鋁膜結構與分析……………….………………………..20

3-1-1 鍍製鋁膜之製程分析…………….…………………………………………...20

3-1-2 調控陽極氧化鋁膜厚度之製程……………………………………………....21

3-1-3 調控陽極氧化鋁膜中奈米孔洞之製程……………………………………....22

3-1-4 陽極氧化鋁膜殘留鋁之鑑定分析…………………………………………....22

3-1-5 薄膜退火不同溫度對玻璃基材穿透率之影響……………………………....23

3-1-6 不同薄膜厚度對玻璃基材穿透率影響..…………………………………....24

3-1-7不同孔洞大小對玻璃基材穿透率影響…………………………………....25

3-1-8孔洞規則性對玻璃基材穿透率影響……………………………………....26

3-1-9錐形孔洞對玻璃基材穿透率影響………….……………………………....26

3-2 在Sapphire基材上製備陽極氧化鋁膜結構與分析..……………………………......27

3-2-1不同孔洞大小對Sapphire基材穿透率影響………………………………....27

3-2-2錐形孔洞對Sapphire基材穿透率影響……………………………………....28

3-3 大面積抗反射陽極氧化鋁膜之製備…………………………………………………...28

3-4 電化學沉積法製備一維雙晶銅金屬奈米線……………………...……………………29

3-4-1 陽極氧化鋁模板……………………………………………………………..29

3-4-2直流電鍍法製備雙晶銅奈米線之形貌與結構分析….……………………..29

3-4-3脈衝電鍍法製備雙晶銅奈米線之形貌與結構分析….……………………..30

第四章 結論與未來展望…………………………………………………………………….34

4-1 結論……………………………………………………………………………………...34

4-2 未來展望………………………………………………………………………………...35

參考文獻……………………………………………………………………………………...36

表目錄………………………………………………………………………………………...43

圖目錄………………………………………………………………………………………...45

參考文獻 [1] E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity.” Chemical Society Reviews 38 (2009) 1759-1782.

[2] A. Mews, A. V. Kadavanich, U. Banin, and A. P. Alivisatos, “Structural and spectroscopic investigations of CdS/HgS/CdS quantum-dot quantum wells.” Physical Review B 53 (1996) 13242-13245.

[3] J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. P. Abraham, D. Jamakosmanovic, and E. H. Sargent , “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air-and light-stability.” American Chemical Society Nano 4 (2010) 869-878.

[4] P. I. Wang, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Novel growth mechanism of single crystalline Cu nanorods by electron beam irradiation.” Nanotechnology 15 (2004) 218-222.

[5] P. M. Rao, L. Cai, C. Liu, I. S. Cho, C. H. Lee, J. M. Weisse, P. Yang, and X. Zheng, “Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation.” Nano Letters 14 (2014) 1099-1105.

[6] W. Wei, X. Yibing, W. Yong, D. Hongxiu, X. Chi, and T. Fang, “Glucose biosensor based on glucose oxidase immobilized on unhybridized titanium dioxide nanotube arrays. ” Microchimica Acta 181 (2014) 381-387.

[7] N. A. Malvadkar, M. J. Hancock, K. Sekeroglu, W. J. Dressick, and M. C. Demirel, “An engineered anisotropic nanofilm with unidirectional wetting properties.” Nature Materials 9 (2010) 1023-1028.

[8] B. Mitra and K. P. Ghatak, “On the field emission from HgTe/CdTe supperlattices with graded structures in the presence of a quantizing magnetic field.” Physics Letters A 146 (1990) 357-361.

[9] S. Nakamura, M. Senoh, N. Iwasa, S. I. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes.” Japanese Journal of Applied Physics 34 (1995) L1332-L1335.

[10] B.Bahadur, J. D. Sampica, J. L. Tchon, and A Butterfield "Direct dry film optical bonding‐A low‐cost, robust, and scalable display lamination technology." Journal of the Society for Information Display 19 (2011) 732-740.

[11] S. P. Chow and G. L. Harding, “Effect of antireflection coatings on the transmittance of glass tubular and plane double glazed covers for flat plate solar collectors.” Solar Energy 34 (1985) 183-186.

[12] H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review.” Energy & Environmental Science 4 (2011) 3779-3804.

[13] F. Rubio, J. Denis, J. M. Albella, and J. M. M. Duart, “Sputtered Ta2O5 antireflection coatings for silicon solar cells.” Thin Solid Films 90 (1982) 405-408.

[14] A. A. Tesar, M. Balooch, K. W. Shotts, and W. J. Siekhaus, “Morphology and laser damage studies by atomic force microscopy of e-beam evaporation deposited antireflection and high-reflection coatings.” International Society for Optics and Photonics 1441 (1990) 228.

[15] S. Ogura, N. Sugawara and R. Hiraga, “Refractive index and packing density for MgF2 films: correlation of temperature dependence with water sorption.” Thin Solid Films 30 (1975) 3-10.

[16] W. J. Coleman, “Evolution of optical thin films by sputtering.” Applied Optics 13 (1974) 946-951.

[17] M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm.” Optics Express 16 (2008) 5290-5298.

[18] D. Chen, “Anti-reflection (AR) coatings made by sol–gel processes: a review.” Solar Energy Materials and Solar Cells 68 (2001) 313-336.

[19] P. Lalanne and M. Hutley, “The optical properties of artificial media structured at a subwavelength scale.” Encyclopedia of Optical Engineering (2003) 62-71.

[20] T. Lohmueller, R. Brunner, J. P. Spatz, “Improved properties of optical surfaces by following the example of the moth eye.” Biomimetics Learnings from Nature (2010) 451-466.

[21] S. J. Wilson and M. C. Hutley, “The optical properties of moth eye antireflection surfaces.” Journal of Modern Optics 29 (1982) 993-1009.

[22] C. H. Sun, P. Jiang and Bin Jiang, “Broadband moth-eye antireflection coatings on silicon.” Applied Physics Letters 92 (2008) 061112.

[23] Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott,”Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting.” Applied Physics Letters 94 (2009): 263118.

[24] C. J. Ting, C. F. Chen, and C. P. Chou, “Subwavelength structures for broadband antireflection application.” Optics Communications 282 (2009) 434-438.

[25] X. Zhang, J. Zhang, Z. Ren, X. Li, X. Zhang, D. Zhu, T. Wang, and T. T. B.Yang, “Morphology and wettability control of silicon cone arrays using colloidal lithography,” Langmuir 25 (2009) 7375-7382.

[26] Y. Kanamori, E. Roy, and Y. Chen, “Antireflection sub-wavelength gratings fabricated by spin-coating replication,” Microelectronic Engineering 78 (2005) 287-293.

[27] T Taguchi, H Hayashi, A Fujii, and K Tsuda, “80.3: Distinguished paper: ultra‐low‐reflective 60‐in. LCD with uniform moth‐eye surface for digital signage.” SID Symposium Digest of Technical Papers. 41 (2010) 1196-1199.

[28] U. Yoshihiro, “Continuous roll imprinting of moth eye antireflection surface using anodic porous alumina.” Springer Netherlands (2012): 915-917.

[29] T. Yanagishita, K. Nishio , and H. Masuda, “Antireflection polymer hole array structures by imprinting using metal molds from anodic porous alumina.” Applied Physics Express 1 (2008) 067004.

[30] L. Soserov and R. Todorov, “Optical properties of thin nanoporous aluminium oxide films formed by anodization.” Bulgarian Chemical Communications 45 (2013) 47-50.

[31] J. Wang, C.W. Wang, Y. Li, and W.M. Liu, “Optical constants of anodic aluminum oxide films formed in oxalic acid solution.” Thin Solid Films 516 (2008) 7689-7694.

[32] T. D. Lazzara, K. H. Aaron Lau, and K. Wolfgang, “Mounted nanoporous anodic alumina thin films as planar optical waveguides.” Journal of Nanoscience and Nanotechnology 10 (2010) 4293-4299.

[33] M. Pashchanka, S. Yadav, T. Cottr, and J. J. Schneider, “Porous alumina-metallic Pt/Pd, Cr or Al layered nanocoatings with fully controlled variable interference colors.” Nanoscale 6 (2014) 12877-12883.

[34] T. S. Shih, P. S. Wei, and Y.S. Huang, “Optical properties of anodic aluminum oxide films on Al alloys.” Surface and Coatings Technology 202 (2008) 3298-3305.

[35] G. E. Moore, “Cramming more components onto integrated circuits.” Proceedings of the IEEE 86 (1998) 82-85.

[36] M. T. Bohr, “Interconnect scaling-the real limiter to high performance ULSI.”, Institute of Electrical and Electronic Engineers (1995) 241-244.

[37] C. Ryu, K. W. Kwon, A. L. S. Loke, and H. Lee, “Microstructure and reliability of copper interconnects.” Institute of Electrical and Electronic Engineers 46 (1999) 1113-1120.

[38] A. V. Vairagar, S. G. Mhaisalkar and, A. Krishnamoorthy, “Effect of surface treatment on electromigration in sub-micron Cu damascene interconnects,” Thin Solid Films 462 (2004) 325-329.

[39] C. N. Liao, K. C. Chen, W. W. Wu, and L. J. Chen, "In-situ transmission electron microscopy study of nanotwinned copper under electromigration." Institute of Electrical and Electronic Engineers (2010) 254-255.

[40] J. Tao, N. W. Cheung, and C. Hu, "Electromigration characteristics of copper interconnects." Institute of Electrical and Electronic Engineers 14 (1993) 249-251.

[41] F. M. d’Heurle, “The effect of copper additions on electromigration in aluminum thin films.” Metallurgical Transactions 2 (1971) 683-689.

[42] Y. C. Hu, Y. H. Lin, C. R. Kao, and K. N. Tu, “Electromigration failure in flip chip solder joints due to rapid dissolution of copper.” Journal of Materials Research 18 (2003) 2544-2548.

[43] P. C. Wang and R. G. Filippi, “Electromigration threshold in copper interconnects.” Applied Physics Letters 78 (2001) 3598-3600.

[44] C. Y. Tsai, C. H. Lin, and M. S. Yang, "Preventing electromigration of copper; enhanced wetting ability on surface of under layer." U.S. Patent No. 6,429,115. 6 Aug. 2002.

[45] 白春禮,“Nanometer scale science and technology,”凡異出版社

[46] 李正中,“薄膜光學與鍍膜技術”藝軒圖書出版社

[47] 白木 靖寬,“薄膜工程學” 全華科技出版社

[48] X. Wang and G. R. Han, “Fabrication and characterization of anodic aluminum oxide template.” Microelectronic Engineering 66 (2003) 166-170.

[49] A. Belwalkar, E. Grasing, W. Van Geertruyden , Z. Huang, and W. Z. Misiolek, “Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes.” Journal of Membrane Science 319 (2008) 192-198.

[50] S. K. Hwang, S. H. Jeong, H.Y. Hwang, O. J. Lee, and K. H. Lee, “Fabrication of highly ordered pore array in anodic aluminum oxide.” Korean Journal of Chemical Engineering 19 (2002) 467-473.

[51] N. Itoh, K. Kato, T. Tsuji, and M. Hongo, “Preparation of a tubular anodic aluminum oxide membrane.” Journal of Membrane Science 117 (1996) 189-196.

[52] K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, and U. Gösele, “Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization.” American Chemical Society Nano 2 (2008) 302-310.

[53] G. E. Thompson, “Porous anodic alumina: fabrication, characterization and applications.” Thin Solid Films 297 (1997) 192-201.

[54] O. Jessensky, F. Müller and U. Gösele, “Self‐organized formation of hexagonal pore structures in anodic alumina.” Journal of the Electrochemical Society 145 (1998) 3735-3740.

[55] O. Jessensky, F. Müller , and U. Gösele, “Self-organized formation of hexagonal pore arrays in anodic alumina.” Applied Physics Letters 72 (1998) 1173-1175.

[56] C. Ottone, M. Laurenti, K. Bejtka, A. Sanginario ,and V. Cauda, “The effects of the film thickness and roughness in the anodization process of very thin aluminum films.” Journal of Materials Science and Nanotechnology 1 (2014) 1-9

[57] H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina.” Science 268 (1995) 1466-1468.

[58] H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, and T. Tamamura, “Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina.” Applied Physics Letters 78 (2001) 826-828.

[59] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and triangular nanohole array architectures in anodic alumina.” Advanced Materials 13 (2001) 189-192.

[60] C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces.” Applied Physics Letters 78 (2001) 120-122.

[61] S. Z. Chu, K. Wada, S. Inou, and S. Todoroki, “Formation and microstructures of anodic alumina films from aluminum sputtered on glass substrate.” Journal of the Electrochemical Society 149 (2002) B321-B327.

[62] P. G. Miney, P. E. Colavita, M. V. Schiza, R. J. Priore, F. G. Haibach, and M. L. Myrick, “Growth and characterization of a porous aluminum oxide film formed on an electrically insulating support.” Electrochemical and Solid-State Letters 6 (2003) B42-B45.

[63] W. Zaghdoudi, M. Gaidi, and R. Chtourou, “Microstructural and optical properties of porous alumina elaborated on glass substrate.” Journal of Materials Engineering and Performance 22 (2013) 869-874.

[64] C. J. Yang, S. W. Liang, P. W. Wu, C. Chen, and J. M. Shieh, “Fabrication of anodic aluminum oxide film on large-area glass substrate.” Electrochemical and Solid-State Letters 10 (2007) C69-C71

[65] M. P. Houng, W. L. Lu, T. H. Yang, and K. W. Lee, “Characterization of the nanoporous template using anodic alumina method.” Journal of Nanomaterials 2014 (2014) 130716.

[66] K. Huang, Y. Li, Z. Wu, C. Li, H. Lai, and J Kang, “Asymmetric light reflectance effect in AAO on glass. ”Optics Express 19 (2011) 1301-1309.

[67] S. J. Park, H. S. Lee, J. H. Cho, and K. W. Lee, “Nanoporous anodic alumina film on glass: improving transparency by an ion-drift process.” Electrochemical and Solid-State letters 8 (2005) D5-D7.

[68] H. Zhuo, F. Peng, L. Lin, Y. Qu, and F. Lai, “Optical properties of porous anodic aluminum oxide thin films on quartz substrates.” Thin Solid Films 519 (2011) 2308-2312.

[69] Y. Wu and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth.” Journal of the American Chemical Society 123 (2001) 3165-3166.

[70] Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, and Y. Tang, “Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires.” Nano Letters 2 (2002) 717-720.

[71] K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurišić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO nanorods prepared by a hydrothermal method, ” The Journal of Physical Chemistry B 110 (2006) 20865-20871.

[72] Y. C. Kong, D.P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Applied Physics Letters 78 (2001) 407-409.

[73] P. C. Chang, Z. Fan, D. Wang, W. Y. Tseng, W. A. Chiou, J. Hong, and J. G. Lu, “ZnO nanowires synthesized by vapor trapping CVD method.” Chemistry of Materials 16 (2004) 5133-5137.

[74] M. P. Zach, K. H. Ng, and R. M. Penner, “Molybdenum nanowires by electrodeposition.” Science 290 (2000) 2120-2123.

[75] R. Al-Salman, J. Mallet, M. Molinari, P. Fricoteaux, F. Martineau, M. Troyon, S. Zein El Abedin, and F. Endres, “Template assisted electrodeposition of germanium and silicon nanowires in an ionic liquid.” Physical Chemistry Chemical Physics 10 (2008) 6233-6237.

[76] K. V. Singh, A. A. Martinez-Morales, G. T. S. Andavan, K. N. Bozhilov, and M. Ozkan “A simple way of synthesizing single-crystalline semiconducting copper sulfide nanorods by using ultrasonication during template-assisted electrodeposition.” Chemistry of Materials 19 (2007) 2446-2454.

[77] H. Liu, F. Wang, Y. Zhao, J. Liu, K. C. Park, and M.Endo,“Synthesis of iron–palladium binary alloy nanotubes by template-assisted electrodeposition from metal-complex solution.” Journal of Electroanalytical Chemistry 633 (2009) 15-18.

[78] M. Zhang, S. Lenhert, M. Wang, L. Chi, N. Lu, H. Fuchs, and N. B. Ming, “Regular Arrays of Copper Wires Formed by Template‐Assisted Electrodeposition.” Advanced Materials 16 (2004) 409-413.

[79] Y. Lai, Y. Huang, H. Wang, J. Huang, Z. Chen, and C. Lin, “Selective formation of ordered arrays of octacalcium phosphate ribbons on TiO2 nanotube surface by template-assisted electrodeposition.” Colloids and Surfaces B 76 (2010) 117-122.

[80] N. Taşaltın, S. Öztürk, N. Kılınç, H. Yüzer, and Z. Z. Öztürk, “Fabrication of Pd–Fe nanowires with a high aspect ratio by AAO template-assisted electrodeposition.” Journal of Alloys and Compounds 509 (2011) 3894-3898.

[81] SZ. El. Abedin, A. Prowald, and F. Endres, “Fabrication of highly ordered macroporous copper films using template-assisted electrodeposition in an ionic liquid.” Electrochemistry Communications 18 (2012) 70-73.

[82] M. T. Bohr, “Interconnect scaling-the real limiter to high performance ULSI,” Institute of Electrical and Electronic Engineers (1995) 241-244.

[83] C. J .Shute, B. D. Myers, S. Xie, S. Y. Li, T. W. Barbee, A. M. Hodge, and J. R. Weertman, “Detwinning, damage and crack initiation during cyclic loading of Cu samples containing aligned nanotwins.” Acta Materialia 59 (2011) 4569-4577.

[84] H. Y. Hsiao, C. M. Liu, H. Lin, T. C. Liu, C. L. Lu, Y. S. Huang, C. Chen, and K. N. Tu, “Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper.” Science 336 (2012) 1007-1010.

[85] D. Xu, V. Sriram, V. Ozolins, J. M. Yang, K. N. Tu, G. R. Stafford, C. Beauchamp, I. Zienert, H. Geisler, P. Hofmann, and E. Zschech, “Nanotwin formation and its physical properties and effect on reliability of copper interconnects.” Microelectronic Engineering 85 (2008) 2155-2158.

[86] N. Li, J. Wang, J. Y. Huang, A. Misra, and X. Zhang ,”Influence of slip transmission on the migration of incoherent twin boundaries in epitaxial nanotwinned Cu.” Scripta Materialia 64 (2011) 149-152.

[87] E. C. C. Yeh and K. N. Tu, “Numerical simulation of current crowding phenomena and their effects on electromigration in very large scale integration interconnects.” Journal of Applied Physics 88 (2000) 5680-5686.

[88] C. Ryu, K. W. Kwon, A. L. S. Loke, H. Lee, H. Nogami, T. Dubin, V. M, and S. S. Wong, “Microstructure and reliability of copper interconnects.” Institute of Electrical and Electronic Engineers 46 (1999) 1113-1120.

[89] L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, “Ultrahigh strength and high electrical conductivity in copper.” Science 304 (2004) 422-426.

[90] K. C. Chen, W. W. Wu, C. N. Liao, L. J. Chen, and K. N. Tu, “Observation of atomic diffusion at twin-modified grain boundaries in copper,” Science 321 (2008) 1066-1069.

[91] C. N. Liao, Y. C. Lu, and D. Xu, “Modulation of crystallographic texture and twinning structure of cu nanowires by electrodeposition,” Journal of the Electrochemical Society 160 (2013) D207-D211.

[92] D. Xu, W. L. Kwan, K. Chen, X. Zhang, V. Ozolins, and K. N. Tu,. "Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition." Applied Physics Letters 91 (2007) 254105.

[93] D. Xu, V. Sriram, V. Ozolins, J. M. Yang, K. N. Tu, G. R. Stafford, and C Beauchamp

, "In situ measurements of stress evolution for nanotwin formation during pulse electrodeposition of copper." Journal of Applied Physics 105 (2009) 023521.

指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2015-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明