博碩士論文 102324048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.234.143.26
姓名 楊柏宣(Bo-Xuan Yang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 高介電常數TiOX/SiOX介電層製備低電壓場效應 電晶體元件
(Low Voltage Field Effect Transistor Based on High Dielectric Constant Titanium Oxide/ Silicon Oxide Dielectric)
相關論文
★ 自組裝嵌段共聚高分子/小分子混成奈米浮閘極記憶體:元件製備及效能評估★ 硫碳鏈聯噻吩環小分子半導體及高介電常數TiOX/SiOX介電層製備低電壓場效應光電晶體元件
★ 利用可溶液製程之含硫碳鏈聯噻吩小分子製作高效能有機場效應電晶體★ 以噴塗技術沉積有機半導體薄膜:形貌分析及其於有機場效應電晶體元件應用
★ 利用溶液製程製作不同次結構之併環噻吩小分子高效能有機場效應電晶體★ 利用超音波噴塗技術製備鈣鈦礦薄膜於太陽能 電池元件之應用
★ 利用溶液剪切力塗佈法製作高效能DTTRQ小分子 N 型有機場效電晶體元件★ 用於高性能n型有機薄膜晶體管的溶液 - 二亞甲基取代的醌基二炔基噻吩(DTDSTQ)基小分子
★ 利用溶液剪切力塗佈法製備高分子與小分子混摻之有機場效電晶體元件★ 利用兩步驟超音波噴塗技術製備平面型p-i-n結構鈣鈦礦太陽能電池元件之應用
★ 透明氧化物薄膜電晶體與電晶體式記憶體之分析與應用★ 以含硫碳鏈並?吩環小分子半導體材料利用溶液剪切力塗佈法製作高性能有機場效應電晶體
★ 剪切力溶液製程應用於高效能有機薄膜電晶體:含硒碳鏈聯?吩小分子半導體材料★ 利用超音波噴塗技術製備混合有機陽離子鈣鈦礦 太陽能電池
★ 超音波噴塗法製備鈣鈦礦薄膜並探討添加劑對薄膜形貌及其太陽能電池元件光伏表現之影響★ 超音波噴塗技術結合多通道注射幫浦進料調控系統製備混合鹵素鈣鈦礦太陽能電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本實驗中,十八烷基磷酸(octadecylphosphonic acid; ODPA)覆蓋高介電常數TiOX/SiOX和有機混成(hTSO)之介電層製備有機pentacene場效應電晶體。沉積自組裝單分子層後,厚度約為120 nm的hTSO介電層,並擁有145 nF cm-2的電容值、高介電常數(~20)及低漏電流(10-7 A cm-2)。本實驗將hTSO/ODPA混成介電層沉積pentacene製備有機場效應電晶體,其操作電壓低於-3.0 V,電流開關比超過104,閥值電壓小於-0.54 V,亞閥值斜率小於300 mv dec-1,遷移率達0.2 cm2 V-1 s-1。而在最後對其進行穩定性測試,hTSO介電層經過ODPA沉積後的電晶體具有良好的穩定性。
在本實驗中,以全溶液製程製備全透明之低電壓氧化鋅(ZnO)場效應電晶體。控制錫的摻雜濃度及退火溫度製備高導電度透明ITO並作為閘極。為了製備低成本之電子元件,溶液製程之ZnO薄膜被用來當作場效應電晶體之主動層。新退火溫度條件400 oC之hTSO 介電常數高達34。製備出以旋轉塗佈ITO閘極及具有高電容值旋轉塗佈hTSO介電層,並最後以噴塗法製備PEDOT:PSS作為源極及汲極製備全溶液製程且透明之ZnO場效應電晶體。結果顯示出有潛力作為高性能之全溶液製程且透明之ZnO場效應電晶體。
摘要(英) We reported on the fabrication of low-voltage operating pentacene-based organic thin film transistors (OTFTs), composted of a high k gate dielectric made from titanium-silicon oxide/organic hybrid materials(hTSO) covered with a long alkyl chain octadecylphosphonic acid(ODPA). 120 nm-thick hTSO hybrid dielectric provides high capacitance (145 nF cm-2), high k value (~20) and low leakage current density (10-7 A cm-2). Employing the appropriate hTSO/ODPA hybrid dielectric, pentacene based OTFTs operate under -3.0 V, on/off ratio above 104, threshold voltage below -0.54 V, subthreshold slopes as low as 300 mv dec-1, and mobilities as 0.2 cm2 V-1 s-1.
We reported low-voltage all solution-processable transparent ZnO-FETs. Controlling the Sn doping concentration and the annealing method/atmosphere enabled highly conductive transparent gate electrodes. Solution-processed ZnO thin films are attractive as active materials in field effect transistors (FETs) for low-cost electronic device applications. The electrical characteristics of 400 oC hTSO show a high dielectric constant of nearly 34. For the first time, all solution-processed fully transparent ZnO-FETs based on spin-coated ITO gate electrodes, hTSO gate dielectric layers with high capacitance and spray-coating PEDOT:PSS pattern electrodes were demonstrated. Our results suggest that solution-processable fully transparent oxide FETs have the potential for low-temperature and high-performance application in transparent.
關鍵字(中) ★ 高介電常數材料
★ 有機場效應電晶體
★ 溶液凝膠法
關鍵字(英) ★ High-K material
★ OFET
★ Sol-gel
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 xi
表目錄 xvi
第一章 緒論 1
1-1 前言 1
1-2 場效應電晶體 2
1-2-1 簡介 2
1-2-2 場效應電晶體原理及工作模式 2
1-2-3 電晶體元件結構 5
1-2-4 重要參數 7
1-2-4-1 載子遷移率(Mobility;" μ" )及閥值電壓(Threshold Voltage; Vth) 7
1-2-4-2 電流開關比(On/off ratio; Ion/Ioff) 8
1-2-4-3 亞閥值斜率(subthreshold Swing; S.S.) 8
1-2-4-4 電荷陷阱密度(Trap Density; Ntrap) 9
1-3 介電層材料及特性 9
1-3-1 介電常數(Dielectric Constant; k) 9
1-3-2 常用介電層介紹 10
1-3-3 漏電流(Leakage Current; J) 11
1-3-4 粗糙度(Roughness) 14
1-3-5 無機高介電常數介電層 15
1-3-6 有機介電層 16
1-3-7 介電層製備方法 18
1-3-7-1 原子層沉積法 18
1-3-7-2 濺鍍法 19
1-3-7-3 電漿氧化反應 20
1-3-7-4 陽極氧化法 21
1-3-7-5 溶液-凝膠法 22
1-3-7-6 有機介電層製備方式 26
1-3-8 自組裝單分子層與多層介電層 27
1-3-8-1 自組裝單分子層 27
1-3-8-2 多層介電層 30
1-4 Pentacene性質 31
1-5 噴塗法製備ZnO及其特性 32
1-6 研究動機 33
第二章 實驗 35
2-1 實驗材料及藥品 35
2-2 實驗儀器 36
2-2-1 製程儀器 36
2-2-2 分析儀器 36
2-3 介電層薄膜及半導體層物性分析 37
2-3-1 鍵結及元素分析 37
2-3-2 熱性質分析 38
2-3-3 接觸角及表面形態分析 38
2-3-4 電性分析及穩定性測試 39
2-4 實驗步驟 39
2-4-1 溶液-凝膠法合成TiOX/SiOX混成薄膜前驅物 39
2-4-2 反應機制 41
2-4-3 TiOX/SiOX混成薄膜製備pentacene薄膜電晶體 42
2-4-3-1 介電層薄膜製備 42
2-4-3-2 自組裝單分子層製備 42
2-4-3-3 元件製備 43
2-4-3-4 實驗流程 44
2-4-4 TiOX/SiOX混成薄膜製備透明ZnO薄膜電晶體 45
2-4-4-1 氧化銦錫(ITO)製備 45
2-4-4-2 介電層薄膜製備 45
2-4-4-3 ITO及ZnO反應機制 45
2-4-4-4 元件製備 46
2-4-4-5 實驗流程 48
第三章 TiOX/SiOX混成薄膜製備pentacene薄膜電晶體實驗結果與討論 49
3-1 熱重分析 49
3-2 傅立葉轉換紅外線光譜分析 50
3-3 X射線光電子能譜分析 51
3-4 接觸角分析 53
3-5 原子力顯微鏡分析 54
3-5-1 介電層表面形態 54
3-5-2 半導體層表面形態 55
3-6 漏電流及電容分析 55
3-6-1 漏電流分析 55
3-6-2 電容分析 56
3-7 電晶體電性分析 58
3-7-1 轉移特性曲線圖 58
3-7-2 輸出特性曲線圖 60
3-8 穩定性測試 61
第四章 TiOX/SiOX混成薄膜製備透明ZnO薄膜電晶體實驗結果與討論 63
4-1 熱重分析 63
4-2 傅立葉轉換紅外線光譜分析 64
4-3 X射線光電子能譜分析 66
4-4 氧化銦錫導電度量測 69
4-5 電容分析 69
4-6 電性量測 70
4-6-1 轉移特性曲線圖 70
4-6-2 輸出特性曲線圖 74
第五章 結論與未來展望 75
第六章 參考文獻 76
參考文獻 1. E. Fortunato, P. Barquinha and R. Martins. Adv. Mater. 2012, 24, 2945.
2. D. Barbe and C. Westgate. J. Phys. Chem. Solids 1970, 31, 2679.
3. C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Brédas, P. C. Ewbank and K. R. Mann. Chem. Mater. 2004, 16, 4436.
4. S. R. Thomas, P. Pattanasattayavong and T. D. Anthopoulos. Chem. Soc. Rev. 2013, 42, 6910.
5. M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee and S. Nam. Nano. Lett. 2013, 13, 2814.
6. C. Y. Han, L. X. Qian, C. H. Leung, C. M. Che and P. T. Lai. Org. Electron. 2013, 14, 2973.
7. M. R. Beaulieu, J. K. Baral, N. R. Hendricks, Y. Tang, A. L. Briseno and J. J. Watkins. ACS Appl. Mater. Interfaces 2013, 5, 13096.
8. M. Esro, G. Vourlias, C. Somerton, W. I. Milne and G. Adamopoulos. Adv. Funct. Mater. 2015, 25, 134.
9. R. P. Ortiz, A. Facchetti and T. J. Marks. Chem. Rev. 2010, 110, 205.
10. M. E. Roberts, N. Queralto, S. C. B. Mannsfeld, B. N. Reinecke, W. Knoll and Z. Bao. Chem. Mater. 2009, 21, 2292.
11. W. Xu, H. Wang, L. Ye and J. Xu. J. Mater. Chem. C 2014, 2, 5389.
12. Y. M. Park, A. Desai, A. Salleo and L. Jimison. Chem. Mater. 2013, 25, 2571.
13. H. Sirringhaus. Adv. Mater. 2005, 17, 2411.
14. D. J. Yun, S. Lee, K. Yong and S. W. Rhee. ACS Appl. Mater. Interfaces 2012, 4, 2025.
15. K. Everaerts, J. D. Emery, D. Jariwala, H. J. Karmel, V. K. Sangwan, P. L. Prabhumirashi, M. L. Geier, J. J. McMorrow, M. J. Bedzyk, A. Facchetti, M. C. Hersam and T. J. Marks. J. Am. Chem. Soc. 2013, 135, 8926.
16. G. Adamopoulos, S. Thomas, P. H. Wobkenberg, D. D. Bradley, M. A. McLachlan and T. D. Anthopoulos. Adv. Mater. 2011, 23, 1894.
17. K. Song, W. Yang, Y. Jung, S. Jeong and J. Moon. J. Mater. Chem. 2012, 22, 21265.
18. J. Hwang, J. Lee, Y. Kim, E. Lee, Y. Wang and H. Kim. Curr. Appl. Phys. 2011, 11, S154.
19. Y. Su, C. Wang, W. Xie, F. Xie, J. Chen, N. Zhao and J. Xu. ACS Appl. Mater. Interfaces 2011, 3, 4662.
20. M.-K. Dai, T.-Y. Lin, M.-H. Yang, C.-K. Lee, C.-C. Huang and Y.-F. Chen. J. Mater. Chem. C 2014, 2, 5342.
21. D. Afouxenidis, R. Mazzocco, G. Vourlias, P. J. Livesley, A. Krier, W. I. Milne, O. Kolosov and G. Adamopoulos. ACS Appl. Mater. Interfaces 2015, 7, 7334.
22. H. Klauk, M. Halik, U. Zschieschang, G. n. Schmid, W. Radlik and W. Weber. J. Appl. Phys. 2002, 92, 5259.
23. J. Li, D. Liu, Q. Miao and F. Yan. J. Mater. Chem. 2012, 22, 15998.
24. S. Lee, D.-J. Yun, S.-W. Rhee and K. Yong. J. Mater. Chem. 2009, 19, 6857.
25. T.-H. Huang, K.-C. Liu, Z. Pei, W.-K. Lin and S.-T. Chang. Org. Electron. 2011, 12, 1527.
26. U. Zschieschang, R. T. Weitz, K. Kern and H. Klauk. Appl. Phys. A 2008, 95, 139.
27. M. Kaltenbrunner, P. Stadler, R. Schwodiauer, A. W. Hassel, N. S. Sariciftci and S. Bauer. Adv. Mater. 2011, 23, 4892.
28. O. Acton, M. Dubey, T. Weidner, K. M. O’Malley, T.-W. Kim, G. G. Ting, D. Hutchins, J. E. Baio, T. C. Lovejoy, A. H. Gage, D. G. Castner, H. Ma and A. K. Y. Jen. Adv. Funct. Mater. 2011, 21, 1476.
29. O. Acton, G. G. Ting Ii, H. Ma, D. Hutchins, Y. Wang, B. Purushothaman, J. E. Anthony and A. K. Y. Jen. J. Mater. Chem. 2009, 19, 7929.
30. S. T. Meyers, J. T. Anderson, D. Hong, C. M. Hung, J. F. Wager and D. A. Keszler. Chem. Mater. 2007, 19, 4023.
31. B. N. Pal, B. M. Dhar, K. C. See and H. E. Katz. Nat. Mater. 2009, 8, 898.
32. C. Avis and J. Jang. J. Mater. Chem. 2011, 21, 10649.
33. M.-G. Kim, M. G. Kanatzidis, A. Facchetti and T. J. Marks. Nat. Mater. 2011, 10, 382.
34. Y. Liu, P. Guan, B. Zhang, M. L. Falk and H. E. Katz. Chem. Mater. 2013, 25, 3788.
35. J. H. Park, Y. B. Yoo, K. H. Lee, W. S. Jang, J. Y. Oh, S. S. Chae, H. W. Lee, S. W. Han and H. K. Baik. ACS Appl. Mater. Interfaces 2013, 5, 8067.
36. J. H. Park, S. J. Lee, T. I. Lee, J. H. Kim, C.-H. Kim, G. S. Chae, M.-H. Ham, H. K. Baik and J.-M. Myoung. J. Mater. Chem. C 2013, 1, 1840.
37. K. Jiang, S. T. Meyers, M. D. Anderson, D. C. Johnson and D. A. Keszler. Chem. Mater. 2013, 25, 210.
38. S. Choi, B.-Y. Park and H.-K. Jung. Thin Solid Films 2013, 534, 291.
39. G. Adamopoulos, S. Thomas, D. Bradley, M. A. McLachlan and T. D. Anthopoulos. Appl. Phys. Lett. 2011, 98, 123503.
40. X. Xu, Q. Cui, Y. Jin and X. Guo. Appl. Phys. Lett. 2012, 101, 222114.
41. Y. H. Lin, H. Faber, K. Zhao, Q. Wang, A. Amassian, M. McLachlan and T. D. Anthopoulos. Adv. Mater. 2013, 25, 4340.
42. K. Jiang, J. T. Anderson, K. Hoshino, D. Li, J. F. Wager and D. A. Keszler. Chem. Mater. 2011, 23, 945.
43. C. Avis, Y. G. Kim and J. Jang. J. Mater. Chem. 2012, 22, 17415.
44. F. Colleaux, J. M. Ball, P. H. Wobkenberg, P. J. Hotchkiss, S. R. Marder and T. D. Anthopoulos. Phys. Chem. Chem. Phys. 2011, 13, 14387.
45. A. Luzio, F. G. Ferré, F. D. Fonzo and M. Caironi. Adv. Funct. Mater. 2014, 24, 1790.
46. Y.-g. Ha, S. Jeong, J. Wu, M.-G. Kim, V. P. Dravid, A. Facchetti and T. J. Marks. J. Am. Chem. Soc. 2010, 132, 17426.
47. O. Acton, G. G. Ting, P. J. Shamberger, F. S. Ohuchi, H. Ma and A. K. Jen. ACS Appl. Mater. Interfaces 2010, 2, 511.
48. M. Shtein, J. Mapel, J. B. Benziger and S. R. Forrest. Appl. Phys. Lett. 2002, 81, 268.
49. G. G, T. II, O. Acton, H. Ma, J. W. Ka and A. K.-Y. Jen. Langmuir 2009, 25, 2140.
50. C. S. Kim, S. J. Jo, S. W. Lee, W. J. Kim, H. K. Baik and S. J. Lee. Adv. Funct. Mater. 2007, 17, 958.
51. H. Ma, O. Acton, D. O. Hutchins, N. Cernetic and A. K. Jen. Phys. Chem. Chem. Phys. 2012, 14, 14110.
52. J. Y. Yoon, S. Jeong, S. S. Lee, Y. H. Kim, J. W. Ka, M. H. Yi and K. S. Jang. ACS Appl. Mater. Interfaces 2013, 5, 5149.
53. C. B. Park and J. D. Lee. Curr. Appl. Phys. 2013, 13, 170.
54. Y. G. Ha, J. D. Emery, M. J. Bedzyk, H. Usta, A. Facchetti and T. J. Marks. J. Am. Chem. Soc. 2011, 133, 10239.
55. H. S. Lee, D. H. Kim, J. H. Cho, M. Hwang, Y. Jang and K. Cho. J. Am. Chem. Soc. 2008, 130, 10556.
56. U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho and H. Morkoç. J. Appl. Phys. 2005, 98, 041301.
57. T. Jun, Y. Jung, K. Song and J. Moon. ACS Appl. Mater. Interfaces 2011, 3, 774.
58. G. Adamopoulos, A. Bashir, S. Thomas, W. P. Gillin, S. Georgakopoulos, M. Shkunov, M. A. Baklar, N. Stingelin, R. C. Maher, L. F. Cohen, D. D. Bradley and T. D. Anthopoulos. Adv. Mater. 2010, 22, 4764.
59. A. Bashir, P. H. Wobkenberg, J. Smith, J. M. Ball, G. Adamopoulos, D. D. C. Bradley and T. D. Anthopoulos. Adv. Mater. 2009, 21, 2226.
60. G. Adamopoulos, A. Bashir, W. P. Gillin, S. Georgakopoulos, M. Shkunov, M. A. Baklar, N. Stingelin, D. D. C. Bradley and T. D. Anthopoulos. Adv. Funct. Mater. 2011, 21, 525.
61. B.-X. Yang, C.-Y. Tseng, A. S.-T. Chiang and C.-L. Liu. J. Mater. Chem. C 2015, 3, 968.
62. C. E. J. Cordonier, A. Nakamura, D. Yoshioka, K. Shimada and A. Fujishima. Thin Solid Films 2013, 534, 529.
63. J. Z. Chen, C.-P. Huang, W.-H. Tseng, I. C. Cheng and C.-I. Wu. Appl. Surf. Sci. 2011, 257, 10042.
64. T. O. L. Sunde, E. Garskaite, B. Otter, H. E. Fossheim, R. Sæterli, R. Holmestad, M.-A. Einarsrud and T. Grande. J. Mater. Chem. 2012, 22, 15740.
65. X. Zhang, W. Wu, T. Tian, Y. Man and J. Wang. Mater. Res. Bull. 2008, 43, 1016.
66. R. Ota, S. Seki, M. Ogawa, T. Nishide, A. Shida, M. Ide and Y. Sawada. Thin Solid Films 2002, 411, 42.
67. H. Wang and V. Kumar. RSC Adv. 2015, 5, 9650.
68. J. S. Meena, M. C. Chu, Y. C. Chang, C. S. Wu, C. C. Cheng, F. C. Chang and F. H. Ko. ACS Appl. Mater. Interfaces 2012, 4, 3261.
69. Y.-Y. Yu and H.-H. Yu. Thin Solid Films 2013, 529, 195.
70. O. Acton, D. Hutchins, L. Arnadottir, T. Weidner, N. Cernetic, G. G. Ting, T. W. Kim, D. G. Castner, H. Ma and A. K. Jen. Adv. Mater. 2011, 23, 1899.
71. C.-F. Sung, D. Kekuda, L. F. Chu, F.-C. Chen, S.-S. Cheng, Y.-Z. Lee, M.-C. Wu and C.-W. Chu. Org. Electron. 2010, 11, 154.
72. O. Acton, G. Ting, H. Ma, J. W. Ka, H.-L. Yip, N. M. Tucker and A. K. Y. Jen. Adv. Mater. 2008, 20, 3697.
73. O. Acton, G. Ting, H. Ma and A. K. Y. Jen. Appl. Phys. Lett. 2008, 93, 083302.
74. J. H. Park, H. S. Lee, J. Lee, K. Lee, G. Lee, K. H. Yoon, M. M. Sung and S. Im. Phys. Chem. Chem. Phys. 2012, 14, 14202.
75. P. Moses, L. M. Wier, J. C. Lennox, H. Finklea, J. Lenhard and R. W. Murray. Anal. Chem. 1978, 50, 576.
76. X. Zhu and Z. Meng. J. Appl. Phys. 1994, 75, 3756.
77. K. Hong, S. H. Kim, K. H. Lee and C. D. Frisbie. Adv. Mater. 2013, 25, 3413.
指導教授 劉振良(Cheng-Liang Liu) 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明