博碩士論文 102324049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:3.15.220.29
姓名 詹家豪(Chia-hao Chan)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估★ 以變壓吸附法回收水煤氣反應後合成氣中二氧化碳之模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以變壓吸附程序處理甲醇裂解後所產生之模擬氣體(一氧化碳33%、氫氣66%及甲烷1%),目的在於將一氧化碳以及氫氣回收並濃縮,使之儲存並利用,氫氣可作為能源之利用,一氧化碳可作為合成化學之原料。
變壓吸附法為一分離氣體混合物之連續性循環程序,利用氣體混合物中各成分對吸附劑之吸附能力的不同而產生的吸附選擇性來篩選氣體,並利用高壓吸附、低壓脫附以得到高濃度的產物。
本研究探討的吸附劑為北大先鋒公司所產之PU1吸附劑。研究一開始先以文獻實驗數據中各氣體成份對吸附劑的平衡吸附量進行迴歸,以取得平衡吸附曲線的參數。再將已建立好的模擬程式分別與文獻中一氧化碳純化工廠數據以及氫氣純化實驗數據進行驗證,以驗證程式及吸附劑的可靠度。
最後分別以四塔二十四步驟變壓吸附程序處理甲醇裂解氣為進料進行模擬,並藉由探討不同的操作變因如吸附塔塔長、進料流率、進料壓力、逆向減壓壓力、儲氣槽大小、以及各步驟時間,尋求最適化的操作條件。
摘要(英) This research studies the separation and concentration of carbon monoxide and hydrogen from the methanol decomposition product gas by pressure swing adsorption (PSA) process, so that the high concentration carbon monoxide and hydrogen can be producted .Hydrogen can be used as energy source and carbon monoxide can be used for raw chemical subtances.
Pressure swing adsorption is a cyclic process to separate gas mixtures based on the difference of adsorption capacity of each component on adsorbent. This technology consists of gas adsorption at high pressure and desorption at low pressure to produce high-purity product.
Zeolite PU1 adsorbent is used in this study. First, the experimental adsorption isotherm data from literatures were regressed to obtain the parameters of extend Langmuir isotherm equation. Then we verified the simulation program and adsorption parameters by comparison with the plant data of concentrating carbon monoxide and the experimental data of concentrating hydrogen from literatures. The agreement is quite good.
Finally, a four-bed twenty-four-step PSA process with methanol decomposition product gas (33% CO , 66 %H2, 1%CH4) as feed was studied to find the optimal operating conditions. The optimal operating conditions can be obtained by assessing different operating variables such as bed length, feed flow rate, feed pressure, vacuum pressure, storage tank volume, and the time of each step.
關鍵字(中) ★ PU1 吸附劑
★ 一氧化碳純化
★ 氫氣純化
★ 變壓吸附
關鍵字(英)
論文目次 摘要 ii
ABSTRACT iii
目錄 v
圖目錄 viii
表目錄 xiii
第一章、緒論 1
第二章、簡介及文獻回顧 5
2-1 變壓吸附之簡介 5
2-1-1 變壓吸附基本原理 5
2-1-2 吸附劑及其選擇性 6
2-1-3 變壓吸附基本操作步驟 7
2-2 文獻回顧 9
2-2-1 PSA程序之發展及改進 9
2-2-2 理論之回顧 12
2-3 研究背景與目的 13
第三章、理論 17
3-1 基本假設 18
3-2 統制方程式 19
3-3 吸附平衡關係式 28
3-3-1等溫吸附平衡關係式 28
3-3-2吸附熱關係式 31
3-4參數推導 32
3-4-1軸向分散係數 32
3-4-2熱傳係數 34
3-5求解的方法 36
3-5-1閥公式 36
3-5-2求解步驟 37
第四章、程式驗證 39
4-1 PU1吸附劑CO純化程序之模擬驗證 39
4-1-1 PU1吸附劑CO純化程序之製程描述 39
4-1-2 PU1吸附劑CO純化程序之模擬結果 45
4-2 雙塔六步驟氫氣純化程序之模擬驗證 48
4-1-1 雙塔六步驟氫氣純化程序之製程描述 48
4-2-2 雙塔六步驟氫氣純化程序之模擬結果 50
第五章、製程描述 54
5-1 四塔變壓吸附製程描述 54
5-2 氣體性質與吸附劑參數 59
第六章、數據分析與結果討論 60
6-1進料壓力對四塔二十四步驟PSA製程之影響 63
6-2進料流率對四塔二十四步驟PSA製程之影響 68
6-3儲氣槽體積對四塔二十四步驟PSA製程之影響 73
6-4塔長對四塔二十四步驟PSA製程之影響 78
6-5順向減壓時間對四塔二十四步驟PSA製程之影響 83
6-6逆向減壓壓力對四塔二十四步驟PSA製程之影響 90
6-7 Step 1/7/13/19時間對四塔二十四步驟PSA製程之影響 95
6-8 Step 6/12/18/24時間對四塔二十四步驟PSA製程之影響 101
6-9 最適化結果討論 106
第七章、結論 108
符號說明 110
參考文獻 114
附錄A、流速之估算方法 117
附錄B、各數據點詳細資料 121
附錄C、能耗計算 129
參考文獻 [1] 李仲來, “一氧化碳的提取及化工應用(上),” 全國化工合成氨設計技術中心站, 2006.
[2] H. Miyajima, A. Kodama, M. Goto and T. Hirose, “Improved Purge Step in Pressure Swing Adsorption for CO Purification,” Adosrption, vol. 11, pp. 625-630, 2005.
[3] 耿雲峰,唐偉,張佳平,謝有暢, “以PU-I為吸附劑的變壓吸附分離CO新技術,” 中國煤碳加工與综合利用技術戰略研討會論文集, pp. 77-79, 2004.
[4] 楊萬宏 且 姜英明, “一種高純度一氧化碳氣體製備方法”. 中國 專利: 03138887,6, 2003.
[5] 楊顯雲, 戴祖宏 且 姜仁普, “甲酸鉀合成新工藝”. 中國 專利: 1273962A, 2000.
[6] C. Skarstrom, "Method and Apparatus for Fractionating Gaseous Mixtures by Adsorption". U.S. Patent 2,944,627, 1960.
[7] P. Guerin de Montgareuil and D. Domine, "Process for separating a binary gaseous mixture by adsorption". United States Patent 3,155,468, 1964.
[8] R.T. Yang, Gas Separation by Adsorption Process, London: Imperial College Press, 1997.
[9] R. Hoke, W. Marsh, F. Pramuk and C. Skarstrom, "Pressure equalization depressuring in heatless adsorption". United States Patent 3,142,547, 1964.
[10] G. Heinze.Belgain Patent 613,267, assigned to Farbenfabriken Bayer A. G., 1962.
[11] D.E. Kowler and R.H. Kadlec, "The Optimal Control of a Periodic Adsorber: Part I. Experiment," AICHE Journal, vol. 18 , pp. 1207-1212, 1972.
[12] Takaai and Tamura, "Absorption process for gas separation". United States Patent 3,797,201, 1974.
[13] L. B. Batta, "Selective adsorption gas separation process". United States Patent 3,636,679, 1972.
[14] S.J. Doong and R.T. Yang, "Hydrogen purification by the multibed pressure swing adsorption process," Reactive Polymers, vol. 6, pp. 7-13, 1987.
[15] L. Jiane, V. G. Fox , L. T. Biegler, "Simulation and optimal design of multiple-bed pressure swing adsorption systems," AIChE Journal, vol. 50, pp. 2904-2914, 2004.
[16] A. Fuderer and E. Rudelstorfer, "Selective adsorption process". United States Patent 3,986,849, 1976.
[17] P. H. Turnock and R. H. Kadlec, "Separation of nitrogen and methane via periodic adsorption," AIChE Journal, vol. 17, pp. 335-342, 1971.
[18] R. T. Yang, S. J. Doong, "Gas separation by pressure swing adsorption: A pore-diffusion model for bulk separation," AIChE Journal, vol. 31, pp. 1829-1842, 1985.
[19] S. Farooq, D. M. Ruthven, "A comparison of linear driving force and pore diffusion models for a pressure swing adsorption bulk separation process," Chemical Engineering Science, vol. 45, pp. 107-115, 1990.
[20] E. Glueckauf and J. I. Coates, "Theory of chromatography. Part IV. The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation," Journal of the Chemical Society, pp. 1315-1321, 1947.
[21] J. Yang, S. Han, C. Cho, C.H. Lee and H. Lee, “Bulk Separation of Hydrogen Mixtures by a One-Column PSA Process,” Separations Technology,vol. 5, pp. 239-249, 1995.
[22] J. Yang, C.H. Lee and J.W. Chang, “Separation of Hydrogen Mixtures by a Two-Bed Pressure Swing Adsorption Process Using Zeolite 5A,” Industrial & Engineering Chemistry Research, vol. 7, pp. 2789-2798, 1997.
[23] J. Yang and C. H. Lee, “Adsorption Dynamics of a Layered Bed PSA for H2 Recovery from Coke Oven Gas,” AICHE Journal, vol. 44, pp. 1325-1334, 1998.
[24] J.H. Park, J.N. Kim and S.H. Cho, “Performance Analysis of Four-Bed H2 PSA Process Using Layered Beds,” AICHE Journal, vol.46, pp. 790-802, 2000.
[25] C. Voss, “Applications of Pressure Swing Adsorption Technology,” Adsorption, vol.11 , pp. 527-529, 2005.
[26] Y.C. Xie, J.P. Zhang, J.G. Qiu, X.Z. Tong, J.P. Fu, G. Yang, H.J. Yan and Y.Q. Tang, “Zeolites Modified by CuCl for Separating CO From Gas Mixtures Containing CO2,” Adsorption, vol.3 ,pp. 27-32, 1996.
[27] N. N. Dutta, G. S. Patil, "Developments in CO separation," Gas Separation & Purification, vol.9 , p. 277–283, 1995.
[28] L.Q. Zhu, J.L. Tu and Y.J. Shi, “Separation of CO-CO2-N2 Gas Mixture for High-Purity CO by Pressure Swing Adsorption,” Gas Separation& Purification, vol.5 , pp. 173-176, 1991.
[29] F. Kasuya and T. Tsuji, “High purity CO gas separation by pressure swing adsorption,” Gas Separation & Purification, vol.5 , p. 242–246, 1991.
[30] Y. B. Chen, P. Ning, Y. C. Xie, Y. H. Chen, H. Sun and Z. Y. Liu, “Pilot-scale Experiment for Purification of CO from Industrial Tail Gases by Pressure Swing Adsorption,” Chinese Journal of Chemical Engineering, vol.16 ,pp. 715-721, 2008.
[31] 易紅宏 , 甯平, 郝吉明 及 楊皓, “制氨廠尾氣中CO 的變壓吸附提純,” 環境科學, pp. 31-36, 2004.
[32] D. Duong, Adsorption Analysis: Equilibria and Kinetics, London: Imperial College Press, 1998.
[33] C.Y. Wen and L.T. Fan, Models for Flow Systems and Chemical Reactors, New York, 1975.
[34] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, 2nd ed., New York: John Wiley & Sons, Inc., 2007.
[35] E.N. Fuller, P.D. Schettler and J.C. Giddings, “A Comparison of Methods for Predicting Gaseous Diffusion Coefficients,” Journal of Gas Chromatography, vol.7 , pp. 222-227, 1965.
[36] E.N. Fuller, K. Ensley and J.C.Giddings, The Journal of Physical Chemistry, p. 3679, 1969.
[37] D. F. Fairbanks and C. R. Wilke, "Diffusion coefficients in multicomponent gas mixtures," Industrial & Engineering Chemistry, vol. 42, pp. 471-475, 1950.
[38] W. L. McCabe, J. C. Smith and P. Harriott, Unit Operations of Chemical Engineering, 7th ed., New York: McGraw-Hill, 2005.
[39] W. H. McAdams, Heat Transmission, 3rd ed., New York: McGraw-Hill, 1954.
[40] D. K. Moon, T. H. Kim, H. Ahn, and C. H. Lee, “Pressure Swing Adsorption Process for Recovering H2 from the Effluent Gas of a Melting Incinerator,” Industrial & Engineering Chemistry Research, vol.40 , p. 15447−15455, 2014.
[41] J. M. Smith and H. C. V. Ness, Introduction to Chemical Engineering Thermodynamics, 4th ed., McGraw-Hill Inc., 1987.
[42] P. V. Danckwerts, “Continuous flow systems: Distribution of residence,” Chemical Engineering Science, vol.2 , pp. 1–13,1953
[43] Y.A. Cengel and M.A. Boles, Thermodynamics: An Engineering Approach, Fifth Edition, New York, 2004.
指導教授 周正堂(Cheng-tung Chou) 審核日期 2015-12-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明