博碩士論文 102324050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.238.199.4
姓名 李念祖(Nien-tsu Lee)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬
★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估★ 以變壓吸附法回收水煤氣反應後合成氣中二氧化碳之模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以變壓吸附法捕獲燃煤電廠排放煙道氣與經水煤氣轉化後之合成氣中的二氧化碳,進料氣體以15%二氧化碳與85%氮氣模擬除硫、除水後的燃煤電廠煙道氣組成,以及41.4%二氧化碳與58.6%氮氣模擬合成氣經過水煤氣轉化後的組成。
本研究選擇多種廠牌之活性碳、5A沸石與13X沸石進行等溫吸附實驗,測量吸附劑對二氧化碳與氮氣的等溫平衡吸附曲線得到吸附量,透過比較吸附量與選擇率,最後選擇UOP 13X沸石作為吸附劑,並將其填入吸附塔內進行突破曲線與脫附曲線實驗。藉由改變不同的進料壓力與組成,觀察其對突破曲線與脫附曲線的影響,並作為後續變壓吸附程序探討的基礎。
最後本研究以單塔四步驟變壓吸附程序進行二氧化碳捕獲實驗,藉由改變不同的操作變因探討二氧化碳濃度與回收率的變化,進而找出最佳操作條件,期望做為未來建立放大製程之設計基礎。
摘要(英) In this study, pressure swing adsorption process is used to capture CO2 from flue gas exhausted by coal-fired power plant and from syngas after water gas shift reaction. The compositions of dry flue gas after suffer removal and syngas are 15% CO2/85% N2 and 41.4% CO2/58.6% N2 respectively.
Three commercial adsorbents were chosen to obtain adsorption isotherm of CO2 and N2 by isothermal equilibrium adsorption experiment. Comparing adsorption amount of CO2 and CO2/N2 selectivity, UOP zeolite 13X was chosen as optimal adsorbent and will be used in follow-up experiment.
Breakthrough curve experiment and desorption curve experiment were carried out. Varying different inlet pressure and composition to evaluate its effect on breakthrough curve and desorption curve. These experimental results could be foundation of investigating pressure swing adsorption process.
Single-bed four-step pressure swing adsorption process was applied to carry out CO2 capture experiment. Operating condition were varied to evaluate their effect on CO2 purity and recovery. Finally, optimal operating condition was found and we hoped these results can be helpful to scale-up process design in the future.
關鍵字(中) ★ 變壓吸附法
★ 煙道氣
★ 合成氣
★ 捕獲二氧化碳
關鍵字(英)
論文目次 摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 ix
表目錄 xvi
第一章、 緒論 1
第二章、 簡介與文獻回顧 5
2-1 吸附之簡介 5
2-2 變壓吸附法基本操作步驟 7
2-3 吸附劑及其選擇性 9
2-4 PSA程序之發展與改進 10
2-5 文獻回顧 14
2-6 等溫平衡吸附曲線 17
2-7 突破曲線 19
第三章、 實驗設備及方法 21
3-1 吸附劑選擇 21
3-2 等溫平衡吸附曲線實驗 22
3-2-1 實驗裝置 22
3-2-2 實驗步驟 27
3-2-3 天平校正 28
3-2-4 浮力校正 29
3-3 突破曲線實驗與脫附曲線實驗 30
3-3-1 實驗裝置、各部規格及特性 30
3-3-2 實驗步驟 34
3-4 變壓吸附實驗 35
3-4-1 實驗裝置、各部規格及特性 38
3-4-2 實驗步驟 42
第四章、 實驗結果與討論 45
4-1 等溫平衡吸附曲線實驗結果與討論 45
4-1-1 浮力校正結果 46
4-1-2 活性碳之等溫平衡吸附實驗結果 51
4-1-3 5A沸石之等溫平衡吸附實驗結果 54
4-1-4 13X沸石之等溫平衡吸附實驗結果 58
4-2 突破曲線實驗與脫附曲線實驗結果與討論 62
4-2-1 壓力與流速對突破曲線的影響 63
4-2-2 進料組成對突破曲線的影響 67
4-2-3 壓力與流速對脫附曲線的影響 69
4-2-4 塔內溫度對脫附曲線的影響 71
4-3 變壓吸附實驗結果與討論 73
4-3-1 以變壓吸附程序捕獲燃煤電廠煙道氣之二氧化碳 75
4-3-1-1 進料壓力對單塔四步驟變壓吸附程序之影響 75
4-3-1-2 高壓吸附時間對單塔四步驟變壓吸附程序之影響 78
4-3-1-3 同向減壓時間對單塔四步驟變壓吸附程序之影響 81
4-3-1-4 逆向減壓時間對單塔四步驟變壓吸附程序之影響 84
4-3-1-5 塔內溫度對單塔四步驟變壓吸附程序之影響 87
4-3-1-6 實驗與程式模擬之最佳操作條件比較 90
4-3-2 以變壓吸附程序捕獲水煤氣轉化後合成氣之二氧化碳 92
4-3-2-1 高壓吸附時間對單塔四步驟變壓吸附程序之影響 92
4-3-2-2 逆向減壓時間對單塔四步驟變壓吸附程序之影響 95
4-3-2-3 同向減壓時間對單塔四步驟變壓吸附程序之影響 98
4-3-2-4 塔內溫度對單塔四步驟變壓吸附程序之影響 101
4-3-2-5 實驗與程式模擬之最佳操作條件比較 104
4-4 能耗計算 106
第五章、 結論 108
參考文獻 110
附錄A、等溫平衡吸附曲線詳細數據 114
附錄B、變壓吸附程序詳細數據 183
參考文獻 [1] 台灣電力公司, “歷年發電量佔比,” [線上]. Available: http://www.taipower.com.tw/content/new_info/new_info-c37.aspx?LinkID=13[存取日期: 18 9 2015].
[2] R. S. Haszeldind, "Carbon Capture and Storage: How Green Can Black Be?", Science. Vol. 325(5948), pp. 1647-1652, 2009.
[3] National Energy Technology Laboratory, "Advanced Carbon Dioxide Capture R&D Program: Technology Update", The United States Department of Energy, DOE/NETL, 2013.
[4] National Energy Technology Laboratory, "Evaluation of Alternate Water Gas Shift Configurations for IGCC Systems", The United States Department of Energy, DOE/NETL-401/080509, 2009.
[5] C. W. Skarstrom, "Method and apparatus for fractionating gaseous mixtures by adsorption". United States Patent 2,944,627, 1960.
[6] P. Guerin de Montgareuil and D. Domine, "Process for separating a binary gaseous mixture by adsorption". United States Patent 3,155,468, 1964.
[7] R. T. Yang, Gas Separation by Adsorption Process, London: Imperial College Press, 1997.
[8] W. D. Marsh, F. S. Pramuk, R. C. Hoke and C. W. Skarstrom, "Pressure equalization depressuring in heatless adsorption". United States Patent 3,142,547, 1964.
[9] T. Tamura, "Absorption process for gas separation". United States Patent 3,797,201, 1974.
[10] K. Chihara and M. Suzuki, "Air drying by pressure swing adsorption," Chem. Eng. Sci., vol. 16, pp. 293-299, 1983.
[11] J. J. Collins, "Air separation by adsorption". United States Patent 4,026,680, 1975.
[12] A. Furderer and E. Rudelstorfer, U.S. Patent 3,986,849 (1976), to Union Carbide Corporation.
[13] R. Kumar, W. C. Kratz, D. E. Guro, D. L. Rarig and W. P. Schimidt, "Gas Mixture Fractionation to Produce Two High Purity Products by Pressure Swing Adsorption", Sep.Sci. and Technol., Vol. 27, pp. 509-522, 1992.
[14] D. Diagne, M. Goto and T. Hirose, "New PSA Process with Intermediate Feed Inlet Position Operated with Dual Refluxes-Application to Carbon-Dioxide Removel and Enrichment", J.Chem. Eng. Japan, Vol.27, pp.85-89, 1994.
[15] B. K. Na, K. K. Koo, H. Lee and H. K. Song, "Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon", Ind. Eng. Chem. Res., Vol. 41, pp. 5498-5503, 2002.
[16] C. H. Lee, J. Yang and H. Ahn, "Effects of Carbon-to-Zeolite Ratio on Layered Bed H2 PSA for Coke Oven Gas", AICHE J., Vol. 45, pp. 535-545, 1999.
[17] P. Xiao, J. Zhang, P. Webley, G. Li, R. Singh and R. Todd, "Capture of CO2 from Flue Gas Streams with Zeolite 13X by Vacuum-Pressure Swong Adsorption", Adsorption, Vol. 14, pp. 575-582, 2008.
[18] J. G. Jee, M. B. Kim and C. H. Lee, "Adsorption Characteristics of Hydrogen Mixtures in a Layered Bed: Binary, Ternary, and Five-Component Mixtures", Ind. Eng. Chem. Res., Vol. 40, pp. 868-878, 2001.
[19] A. Nanoti, S. Dasgupta, Aarti, N. Biswas, A. N. Goswami, M. O. Garg, S. Divekar and C. Pendem, "Reappraisal of the Skarstrom Cycle for CO2 Recovery from Flue Gas Streams: New Results with Potassium-Exchanged Zeolite Adsorbent", Ind. Eng. Chem. Res., Vol. 51, pp. 13765-13772, 2012.
[20] Z. Liu, C. A. Grande, P. Li, J.Yu and A.E. Rodrigus, "Multi-bed Vacuum Pressure Swing Adsorption for Carbon Dioxide Capture from Flue Gas ", Sep. Purif. Technol., Vol. 81, pp.307-317, 2011.
[21] R. Haghpanah, A. Rajendran, S. Farooq, I. A. Karimi, "Optimization of One- and Two-Stage Kinetically Controlled CO2 Capture Processes from Postcombustion Flue Gas on a Carbon Molecular Sieve", Ind. Eng. Chem. Res., Vol. 53, pp. 9186-9198, 2014.
[22] S. Dasgupta, N. Biswas, Aarti, N. G. Gode and S. Divekar, " CO2 recovery from mixtures with nitrogen in a vacuum swing adsorber using metal organic framework adsorbent: A comparative study", Int. J. Greenhouse Gas Control, Vol. 7, pp. 225-229, 2012.
[23] G. Li, P. Xiao, P. Webley, J. Zhang, R. Singh and M. Marshall, "Capture of CO2 from High Humidity Flue Gas by Vacuum Swing Adsorption with Zeolite 13X", Adsorption, Vol. 14, pp. 415-422, 2008.
[24] C. Shen, Z. Liu, P. Li and J. Yu, “Two Stage VPSA Process for CO2 Capture from Flue Gas Using Activated Carbon Beads”, Ind. Eng. Chem. Res., Vol. 51, pp. 5011-5021, 2012.
[25] T. L. P. Dantsa, F. M. T. Luna, I. J. Silva Jr., A. E. B. Torres, D. C. S. de Azevedo, A. E. Rodrigues and R. F. P. M. Moreira, “Carbon Dioxide–Nitrogen Separation through Pressure Swing Adsorption”, Chem. Eng. J., Vol. 172, pp. 698-704, 2011.
[26] S. V. Sivakumar and D. P. Rao, “Modified Duplex PSA. 1. Sharp Separation and Process Intensification for CO2−N2−13X Zeolite System”, Ind. Eng. Chem. Res., Vol. 50, pp. 3426–3436, 2011.
[27] Martunus, Z. Helwani, A. D. Wiheeb, J. Kim and M. R. Othman, “In Situ Carbon Dioxide Capture and Fixation from a Hot Flue Gas”, Int. J. Greenhouse Gas Control, Vol. 6, pp. 179-188, 2012.
[28] K. Labus, S. Gryglewica and J. Machnikowski, "Seperation of Carbon Dioxide from Coal Gasification-Derived Gas by Vacuum Pressure Swing Adsorption", Ind. Eng. Chem. Res., Vol. 53, pp. 2022-2029, 2014.
[29] S. Krishnamurthy, V. R. Rao, S. Guntuka, P. Sharratt, R. Haghpanah, A. Rajendran, M. Amanullah, I. A. Karimi and S. Farooq, " CO2 capture from dry flue gas by vacuum swing adsorption: A pilot plant study", AIChE J., Vol. 60, pp. 1830-1842, 2014.
[30] L. Wang, Z. Liu, P. Li, J. Yu, A. E. Rodrigues. "Experimental and Modeling Investigation on Post-Combustion Carbon Dioxide Capture Using Zeolite 13X-APG by Hybrid VTSA Process", Chem. Eng. J., Vol. 197, pp. 151-161, 2012.
[31] Q. Huang, M. Eić, "Commercial adsrbents as benchmark materials for seperation of carbon dioxide and nitrogen by vacuum swing adsorption process", Sep. Purif. Technol., Vol. 103, pp. 203-215, 2013.
[32] L. Wang, Y. Yang, W. Shen, X. Komg, P. Li, J. Yu and A. E. Rodrigues, "Experimental Evaluation of Adsorption Technology for CO2 Capture from Flue Gas in an Existing Coal-Fired Power Plant", Chem. Eng. Sci.. Vol. 101, pp. 615-619, 2013.
[33] Y. A. Cengel and M. A. Boles, Thermodynamicsl: An Engineering Approach, Fifth Edtion, McGraw-Hill Inc., New York, 2004.
[34] M. Zaman and J. H. Lee, "Carbon Capture from Stationary Power Generation Sources: A Review of the Current Status of the Technologies", Kroean J. Chem. Eng., Vol. 30, pp. 1497-1526, 2013.
指導教授 周正堂、楊閎舜 審核日期 2015-11-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明