博碩士論文 102324051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:3.147.66.178
姓名 陳宥任(Yu-Ren Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬
★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估★ 以變壓吸附法回收水煤氣反應後合成氣中二氧化碳之模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以變壓吸附程序處理發電廠所排放之煙道氣以及經由水煤轉化反應器生成合成氣中的二氧化碳,目的在於將二氧化碳回收並濃縮,使之封存以減少人為造成的溫室氣體排放。
其中煙道氣組成為15%CO2和85%氮氣,而合成氣組成為41.4%二氧化碳、1.3%一氧化碳和57.3%氫氣。
本研究使用的吸附劑為吸附劑13X沸石。研究一開始先以實驗數據中各氣體成份對吸附劑的平衡吸附量進行迴歸,以取得平衡吸附曲線的參數。之後經由理論計算出線性驅動力質傳係數,並與突破曲線實驗和脫附實驗做驗證。再將所建立好的模擬程式與單塔四步驟程序實驗分別以不同氣體進料進行驗證,以證明脫附時線性驅動力質傳係數同時也驗證程式的可靠度。
最後分別以雙塔六步驟變壓吸附程序處理合成氣以及放大三塔十二步驟處理煙道氣,並藉由探討不同的操作變因如吸附塔塔長、進料流率、進料壓力、逆向減壓壓力以及各步驟時間,尋求最適化的操作條件。
摘要(英) This research studies concentrating carbon oxide from the flue gas of an power plant and from syngas after water gas shift reaction by pressure swing adsorption (PSA) process, so that the concentrated carbon oxide can be captured and storaged to reduce greenhouse gas emission.
Commercialized Zeolite 13X is used in this study. In the beginning of this study, the experimental adsorption isotherm data were regressed to obtain the parameters of Langmuir-Freundlich isotherm equation. Then the k value of linear driving force (LDF) model were calculated by theory and verified by breakthrough curve and desorption experiment. Then we verified the simulation program by comparison with the data of a single-bed four-step process experiment. The agreement is quite good.
At the end of this study, both two-bed six-step PSA process for syngas (41.4% CO2,1.3%CO,57.3%H2) and three-bed twelve step PSA process for flue gas (15%CO2,85%N2) were studied to find the optimal operating conditions. The optimal operating conditions can be obtained by assessing different operating variables such as bed length, feed pressure, vacuum pressure, and the time of each step.
關鍵字(中) ★ 變壓吸附
★ 二氧化碳
★ 發電廠
★ 合成氣
★ 多塔程序
★ 溫室效應
關鍵字(英)
論文目次 摘要 I
ABSTRACT II
目錄圖目錄 VI
圖目錄 XI
表目錄 XXI
第一章、 緒論 1
第二章、 簡介及文獻回顧 8
2-1吸附之簡介 8
2-1-1 吸附基本原理 8
2-1-2 吸附劑及其選擇性 9
2-1-3 吸附劑操作原理 10
2-2 文獻回顧 12
2-2-1 PSA程序之發展與改進 12
2-2-2 理論之回顧 15
2-3研究背景與目的 18
第三章、 理論 24
3-1 基本假設 25
3-2 統制方程式 26
3-3 吸附平衡關係式 31
3-3-1 等溫吸附平衡關係式 31
3-3-2 吸附熱關係式 32
3-4 參數推導 33
3-4-1 軸向分散係數 33
3-4-2 熱傳係數 36
3-4-3 線性驅動力質傳係數 39
3-5 邊界條件與流速 42
3-5-1 邊界條件與節點流速 42
3-5-2 閥公式 43
3-6 求解步驟 44
第四章、 平衡吸附曲線與吸脫附曲線 47
4-1 吸附平衡(ADSORPTION EQUILIBRIUM) 48
4-1-1 氣體與吸附劑性質 48
4-1-2 等溫平衡吸附曲線(Isotherm) 51
4-2 吸附動力學(ADSORPTION KINETICS) 57
4-2-1 線性驅動力質傳係數 57
4-2-2 突破曲線模擬驗證 58
4-2-3 脫附實驗模擬驗證 66
第五章、 製程描述 71
5-1 單塔四步驟變壓吸附程序 72
5-2 雙塔六步驟變壓吸附程序 74
5-3 三塔十二步驟變壓吸附程序 76
第六章、 數據分析與結果討論 79
6-1 單塔四步驟變壓吸附法捕獲煙道氣中二氧化碳之驗證 79
6-1-1 高壓吸附時間對單塔四步驟PSA製程之影響 81
6-1-2 同向減壓步驟時間對單塔四步驟PSA製程之影響 85
6-2 煙道氣進料三塔十二步驟變壓吸附程序之模擬 89
6-2-1 塔長對三塔十二步驟PSA製程之影響 92
6-2-2 進料溫度對三塔十二步驟PSA製程之影響 96
6-2-3 進料壓力對三塔十二步驟PSA製程之影響 102
6-2-4 逆向減壓壓力對三塔十二步驟PSA製程之影響 106
6-2-5 高壓吸附時間對三塔十二步驟PSA製程之影響 110
6-2-6 同向減壓時間對三塔十二步驟PSA製程之影響 114
6-2-7 最適化結果討論之煙道氣進料三塔十二步驟 119
6-3 單塔四步驟變壓吸附法捕獲合成氣中二碳化碳之驗證 121
6-3-1 高壓吸附時間對單塔四步驟PSA製程之影響 122
6-4 合成氣進料雙塔六步驟變壓吸附程序之模擬 126
6-4-1 塔長對雙塔六步驟PSA製程之影響 128
6-4-2 進料流率對雙塔六步驟PSA製程之影響 133
6-4-3 進料溫度對雙塔六步驟PSA製程之影響 140
6-4-4 進料壓力對雙塔六步驟PSA製程之影響 147
6-4-5 逆向減壓壓力對雙塔六步驟PSA製程之影響 152
6-4-6 進料時間對雙塔六步驟PSA製程之影響 157
6-4-7 同向減壓時間對雙塔六步驟PSA製程之影響 162
6-4-8 最適化結果討論之合成氣進料雙塔六步驟 167
第七章、 結論 169
7-1 結論 169
7-1-1 管壁為不銹鋼之煙道氣進料三塔十二步驟變壓吸附程序最適化結果 170
7-1-2 管壁為碳鋼之煙道氣進料三塔十二步驟變壓吸附程序 172
7-1-3 合成氣進料雙塔六步驟變壓吸附程序最適化結果 175
7-2 能耗計算 177
符號說明 180
參考文獻 185
附錄A、流速之估算方法 191
附錄B、模擬結果數據 195
B-2煙道氣進料三塔十二步驟變壓吸附程序煙道氣變因結果 195
B-1合成氣進料雙塔六步驟變壓吸附程序變因數據結果 201
附錄C、最適操作條件之塔內壓力變化圖 208
C-1雙塔六步驟變壓吸附程序之合成氣 208
C-2三塔十二步驟變壓吸附程序之煙道氣 209
附錄D、最適操作條件之塔內氣相濃度變化圖 210
D-1雙塔六步驟變壓吸附程序之合成氣 210
D-三塔十二步驟變壓吸附程序之煙道氣 211
附錄E、最適操作條件之塔內固相濃度變化圖 212
E-1雙塔六步驟變壓吸附程序之合成氣 212
E-2三塔十二步驟變壓吸附程序之煙道氣 213
參考文獻 [1] “Emission database for global atmospheric research EDGAR , European Commission,” European Commission, [線上]. Available: http://edgar.jrc.ec.europa.eu/overview.php?.
[2] R.K. Pachauri and L.A. Meyer, “Climate Change 2014: Synthesis Report,” IPCC, Geneva, 2014.
[3] CO2 Emissions by Fuel, International Energy Agency (IEA), 2013.
[4] “我國燃料燃燒二氧化碳排放統計,” 經濟部能源局, 2015.
[5] 2014年能源產業技術白皮書, 經濟部能源局, 2014.
[6] “台灣電力公司-火力發電概況,” 2015. [線上]. Available: http://www.taipower.com.tw/content/new_info/new_info-b12.aspx?LinkID=6.
[7] E.Blomen,C. Hendriks and F. Neele, “Capture technologies Improvements and promising developments,” Energy Procedia, pp. 1505-1512, 2009.
[8] E. Rubin and H. de Coninck, “IPCC special report on carbon,” Cambridge University, UK, 2004.
[9] F.T. Wall, “Combustion processes for carbon capture,” Proceedings of Combustion Institute, pp. 31-47, 2007.
[10] I. International, “Developing a pipeline infrastructure for CO2 capture and storage: issues and challenges,” Technical report prepared for INGAA Foundation., 2009.
[11] Zero, “Zero Emissions Resource Organization,” 2013. [線上]. Available: http://www.zeroCO2.no.
[12] I. Pfaff and A. Kather, “Comparative thermodynamic analysis and integration issues of CCS steam power plants based on oxy-combustion with cryogenic or membrane based air separation.,” Emergu Procedia, pp. 495-502, 2009.
[13] H.J. Herzog, “The economics of CO2 separation and capture,,” Journal of the Franklin Institute, pp. 13-24, 2000.
[14] S. Cavenati, C. A. Grande, and A. E. Rodrigues, “Removal of carbon dioxide from natural gas by vacuum pressure swing adsorption,” Energy and Fuels, pp. 2648-2659, 2006.
[15] A. Agarwal, Advanced Strategies for Optimal Design and Operation of Pressure Swing Adsorption Processes, Pittsburgh, PA: Carnegie Mellon University, 2010.
[16] C. Skarstrom, “Esso research and engineering company”. US 專利: 2944627, 1960.
[17] A. E. Rodrigues,M, D, LeVan and D. Tondeur, Adsorption: Science and Technology, Kluwer Academic Publishers, 1988.
[18] W. K. Choi, T. I. Kwon, Y. K. Yeo, H. Lee , H. K. Song and B. K. Na, “Optimal Operation of the Pressure Swing Adsorption (PSA) Process,” Chemical Engineering, pp. 617-623, 2003.
[19] R.T.Yang, Gas Seperation by Adsorption Process, London: Imperial College Press, 1997.
[20] D. M. Ruthven, S. Farooq and K. S. Knaebel, Pressure Swing Adsorption, VCH, 1994.
[21] B.K. Na, H. L. Lee, K. K. Koo and H. K. Song, “Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process To Recover CO2 from Power Plant Flue Gas Using Activated Carbon,” Ind. Eng. Chem., pp. 5498-5503, 2002.
[22] P.H. Turnock and R. H. Kadlec, "Separation of nitrogen and methane via periodic adsorption," AIChE J., vol. 17, pp. 335-342, 1971.
[23] R.T. Yang and S. J. Doong, "Gas separation by pressure swing adsorption: A pore-diffusion model for bulk separation," AIChE J., vol. 31, pp. 1829-1842, 1985.
[24] M.M. Hassan, N.S. Raghvan and D.M. Ruthven, "Pressure swing air separation on a carbon molecular sieve—II. Investigation of a modified cycle with pressure equalization and no purge," Chem. Eng. Sci., vol. 42, pp. 2037-2043, 1987.
[25] S.Farooq and D.M. Ruthven, "A comparison of linear driving force and pore diffusion models for a pressure swing adsorption bulk separation process," Chem. Eng. Sci., vol. 45, pp. 107-115, 1990.
[26] E.Glueckauf.and J.I. Coates, "Theory of chromatography. Part IV. The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation," J. Chem. Soc., pp. 1315-1321, 1947.
[27] R.T. Yang, Gas Separation by Adsorption Process, London: Imperial College Press, 1997.
[28] R. T. Yang K. T. Chue, J. N. Kim, Y. J. Yoo, and S. H. Cho, “Comparison of Activated Carbon and Zeolite 13X for COa Recovery from Flue Gas by Pressure Swing Adsorption,” Ind. Eng. Chem., pp. 591-598, 1995.
[29] P. D. Jadhav, R. V. Chatti, R. B. Biniwale, N. K. Labhsetwar and S. Devotta, “Monoethanol Amine Modified Zeolite 13X for CO2 Adsorption at Different Temperatures,” Energy & Fuels, pp. 3555-3559, 2007.
[30] M. T.Ho,G. W. Allinson and D. E.Wiley , “Reducing the cost of CO2 capture from flue gases using pressure swing adsorption,” Ind Eng Chem Res, pp. 4883-4890, 2008.
[31] J. A. Delgado, V. I. Águeda, M. A. Uguina, J. L. Sotelo, P. Brea, and C. A. Grande, “Adsorption and Diffusion of H2, CO, CH4, and CO2 in BPL Activated Carbon and 13X Zeolite: Evaluation of Performance in Pressure Swing Adsorption Hydrogen Purification by Simulation,” Ind. Eng. Chem. Res, pp. 15414-15426, 2014.
[32] L. P. Dantasa, M. T. Luna, I. J. Silva, A. B.Torres, D. C.S. de Azevedo, A. E. Rodrigues and F. P. M. Regina, “Carbon dioxide–nitrogen separation through pressure swing adsorption,” Chemical Engineering Journal, pp. 698-704, 2011.
[33] Z. Liu , C. A. Grande, P. Li , J. Yu and A. E. Rodrigues, “Multi-bed Vacuum Pressure Swing Adsorption for carbon dioxide capture from flue gas,” Separation and Purification Technology, pp. 307-317, 2011.
[34] A. Ntiamoah, J. Ling,P. Xiao and P. A. Webley, “CO2 capture by vacuum swing adsorption: role of multiple pressure equalization steps,” Springer Science+Business Media, New York, 2015.
[35] J. Ling , A. Ntiamoah , P. Xiao , P. A. Webley and Y. Zhai, “Effects of feed gas concentration, temperature and process parameters on vacuum swing adsorption performance for CO2 capture,” Chemical Engineering Journal, pp. 47-57, 2015.
[36] K.Shreenath, “CO2 Capture from Dry Flue Gas by Vacuum Swing Adsorption: A Pilot Plant Study,” AIChE J, pp. 1830-1842, 2014.
[37] L. Riboldi and O. Bolland, “Evaluating Pressure Swing Adsorption as a CO2 separation technique in coal-fired power plants,” IJGGC, pp. 1-16, 2015.
[38] S. P. Reynolds , A. Mehrotra and A. D. Ebner, “Heavy reflux PSA cycles for CO2 recovery from flue gas:Part I. Performance evaluation,” Adsorption, pp. 399-413, 2008.
[39] J. A. Delgado, M. A. Uguina, J. L. Sotelo, V. I. Águeda, A. Sanz and P. Gómez, “Numerical analysis of CO2 concentration and recovery from flue gas by a novel vacuum swing adsorption cycle,” Comput,Chem,Eng, pp. 1010-1019, 2010.
[40] J. Zhang and P. A. Webley, “Cycle Development and Design for CO2 Capture from Flue Gas by Vacuum Swing Adsorption,” Environ. Sci. Technol, pp. 563-569, 2008.
[41] D. Marx, L. Joss, M. Hefti, M. Gazzani, and M. Mazzotti, “CO2 Capture from a Binary CO2/N-2 and a Ternary CO2/N-2/H-2 Mixture by PSA: Experiments and Predictions,” Ind. Eng. Chem., pp. 6035-6045, 2015.
[42] N. Susarla, R. Haghpanahb, I.A. Karimia, S. Farooqa,A. Rajendranb, L. S. C. Tanc and J. S T. Limca, “Energy and cost estimates for capturing CO2 from a dry flue gas using pressure/vacuum swing adsorption,” chemical engineering research and design, pp. 354-367, 2015.
[43] D.Duong, Adsorption Analysis: Equilibria and Kinetics, London: Imperial College Press, 1998.
[44] C.Y. Fan and L.T. Wen, Models for Flow Systems and Chemical Reactors, New York, 1975.
[45] R.B. Bird,W.E. Stewart and E.N. Lightfoot, Transport Phenomena, 2nd ed., New York: John Wiley & Sons, Inc., 2007.
[46] E.N. Fuller, P.D. Schettler and J.C. Giddings, “A Comparison of Methods for Predicting Gaseous Diffusion Coefficients,” J. Gas Chromatogr., pp. 222-227, 1965.
[47] E.N. Fuller, K. Ensley and J.C.Giddings, J.Phys.Chem., p. 3679, 1969.
[48] D. F. Fairbanks and C.R. Wilke, "Diffusion coefficients in multicomponent gas mixtures," Ind. Eng. Chem., vol. 42, pp. 471-475, 1950.
[49] W. L. McCabe,J.C. Smith and P.Harriott, Unit Operations of Chemical Engineering, 7th ed., New York: McGraw-Hill, 2005.
[50] W. H. McAdams, Heat Transmission, 3rd ed., New York: McGraw-Hill, 1954.
[51] S.Ruthven and D.M. Farooq , “Heat effects in adsorptioncolumn dynamics. 2. Experimental validation of theone-dimensional model.,” Ind. Eng. Chem. Res., pp. 1084-1090, 1990.
[52] N. Wakao, S. Kaguei and T. Funazkri, “Effect of fluid dispersioncoefficients on particle-to-fluid heat transfer coefficients inpacked beds: correlation of nusselt numbers.,” Chem. Eng. Sci., pp. 325-336, 1979.
[53] G. Carta and A. Cincotti, “Film model approximation fornon-linear adsorption and diffusion in spherical particles.,” Chem. Eng. Sci., pp. 3483-3488, 1998.
[54] J. Karger and D.M. Ruthven, Diffusion in Zeolites and Other Microporous Solids, New York: Wiley.
[55] M.D. LeVan, G. Carta and C.M. Yon, Adsorption and ionexchange. In: Green, D.W. (Ed.), Perry’s Chemical Engineers’Handbook., 7th 編者, New York.: McGrawHill, 1999.
[56] K. Kawazoe, M. Suzuki and K. Chihara, “Chromatographic study of diffusion in molecular-sieving carbon.,” J. Chem. Eng.Jpn., pp. 151-157, 1974.
[57] H. Qinglin, S.M. Sundaram and S. Farooq, “Revisiting transport of gases in the micropores of carbon molecularsieves.,” Langmuir, pp. 393-405, 2003b.
[58] P. V. Danckwerts, “Continuous flow systems: Distribution of residence,” 1953, p. 1–13.
[59] J. M. Smith and H. C. Ness, Introduction to Chemical Engineering Thermodynamics, 4th ed., McGraw-Hill Inc., 1987.
[60] R. V. Siriwardane, M.S. Shen, E. P. Fisher, and J.A. Poston, “Adsorption of CO2 on Molecular Sieves and Activated Carbon,” Energy & Fuels, pp. 279-284, 2001.
[61] S. Cavenati, C. A. Grande and A.E. Rodrigues, “Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures,” J. Chem. Eng., pp. 1095-1101, 2004.
[62] X. Hu , E. Mangano , D. Friedrich,H. Ahn and S. Brandani, “Diffusion mechanism of CO2 in 13X zeolite beads,” Adsorption, pp. 121-135, 2014.
[63] T. L. P. Dantas, F. M. T. Luna, I. J. Silva Jr., A. E. B. Torres, D. C. S. de AzevedoA. E. Rodrigues and R. F.P.M. Moreira, “Modeling of the fixed-bed asdsorption of carbon dioxide and a carbon dioxide nitrogen mixture on zeolit 13X,” Brazilian Journal of Chemical Engineering, pp. 533-544, 2011.
[64] Y.A. Cengel and M.A. Boles, Thermodynamics: An Engineering Approach, Fifth Edition, New York, 2004.
[65] M. Zaman and J. H. Lee, “Carbon Capture from Stationary Power Generation Sources: A Review of the Current Status of the Technologies,” Korean J. Chem. Eng, pp. 1497-1526, 2013.
[66] D. M. Ruthven, Principles and adsorption and adsorption processes, New York: Wiley Interscience, 1984.
[67] K. Kamiuto, A. Goubaru and Ermalina, “Diffusion Coefficients of Carbon Dioxide within Type 13X Zeolite Particles,” Chem. Eng. Comm, pp. 628-638, 2006.
指導教授 周正堂、楊閎舜 審核日期 2015-12-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明