博碩士論文 102324064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.145.191.214
姓名 臧冠遇(Kuan-yu Tsang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 脂質組成成分對細胞膜物理性質與生物功能的影響
(THE INFLUENCES OF LIPID COMPOSITION ON THE PHYSICAL PROPERTIES AND BIOLOGICAL FUNCTION OF THE CELL MEMBRANE)
相關論文
★ 雙連續相中孔二氧化鈦光催化以及電子結構之實驗與模擬研究★ 聚合物-奈米粒子複合材料在玻璃轉移溫度下的結構與動力學相關性之實驗與模擬研究
★ 新興糖基雙子型界面活性劑之結構以及其對基因轉染效率之影響★ 自發曲率、金屬離子吸附以及微脂體膜融合效率三者間之相關性探討
★ 添加具有抗菌潛力的胜肽對磷脂質自組裝結構與彈性性質的影響★ 分子構型與表面電荷密度對雙子型陰陽離子界面活性劑系統之相行為影響
★ 探討具有不同間隔長度的陰、陽離子雙子型界面活性劑對於DNA壓實與解壓實之影響★ 具抗菌潛力之胜肽如何影響脂質膜的彈性性質與結構完整性
★ CoCrFeMnNi 高熵合金 形變行為之探討★ 透過改變磷脂質排列密度減少Amyloid β與膜之間交互作用
★ 對生物膜具活性的胜肽誘導相分離脂質膜產生結構上擾動★ 人類脂肪幹細胞於生醫材料塗佈細胞外間質之純化及分化
★ 發展量測雙層脂質膜的排列密度之實驗技術★ 利用酸鹼度敏感型雙子型界面活性劑製作之基因載體對核內體脂質膜結構之影響
★ 開發預測雙子型界面活性劑之自組裝結構的方法★ 抗肌萎縮蛋白的膜結合錨如何影響其與脂質膜的相互作用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 細胞膜在生物細胞中扮演著極其重要的角色。一般來說在細胞膜中磷脂質為主要成分之一,而磷脂質種類又相當複雜包含不同頭基與雙鍵數。在本篇論文中我們有系統地比較擁有不同頭基與不同雙鍵數的脂質分子與磷脂質膜中的比例,藉由X-光繞射實驗來獲得不同種類脂質分子的靜態物理性質(如:彈性性質),以及利用電子自旋共振光譜來量測不同種類脂質分子的動態物理性質(如:脂質分子尾端碳氫長鏈的動態資訊),最後利用螢光光譜來探討脂質分子組成的改變對細胞膜生物功能性上的影響(如:細胞膜融合),其目的就是為了找出影響生物過程背後的主要機制。
不同頭基(phosphatidylcholine,phosphatidylethanolamine)的脂質分子對自發曲率值與彎曲係數有很大的影響,但對脂質分子尾端碳氫長鏈的動態速率沒有明顯可觀察到的關聯性,此外隨著增加PE頭基脂質分子的數量可以明顯地增加膜融合率。相同頭基的脂質分子隨著雙鍵數的增加自發曲率並沒有明顯地改變,但會明顯地增加脂質分子的動態速率且降低彎曲係數,且膜融合率會明顯下降。
藉由本次實驗的結果,我們找出了不同種類的脂質分子(包含不同頭基與雙鍵數)對細胞膜的物理性質與生物功能有所影響。改變不同脂質頭基與雙鍵數會對膜融合率有顯著的差異,所以我們推測有兩種機制可以改變細胞膜的膜融合率。細胞膜可以透過改變彈性能量與脂質分子的動態速率促進或抑制細胞膜膜融合的發生,而改變方法可藉由不同頭基或雙鍵數的脂質分子來完成,或許這可以解釋為何在生物細胞膜中需要擁有不同頭基與雙鍵數脂質分子的原因。

摘要(英) Cell membranes play very important roles for the cell. In general, phospholipid is one of the major constituents of a cell membrane, whereas cell membranes contain many different kinds of phospholipids with different kinds of headgroups and degrees of unsaturation. In this report, we systematically compare different lipid molecules which have different headgroups and different degrees of unsaturation. We used X-ray diffraction to determine the static physical properties (such as elastic properties) of different kinds of lipid molecules, and used electron spin resonance spectroscopy to determine the dynamic physical properties (such as the dynamics of lipid hydrocarbon chains) of different kinds of lipid molecules. Finally, we used fluorescence spectrophotometer to investigate whether different lipid compositions will affect the biological function (such as membrane fusion) of lipid membranes. We want to find out the relationship between composition (including different headgroups and different degrees of unsaturation) and membrane physical property, and whether these properties will effect biological function. And we also want to know the mechanism underlying this correlation.
The difference in headgroup (phosphatidylcholine(PC), phosphatidylethanolamine(PE)) has great influence on the spontaneous curvature and bending modulus, but it seems to have almost no effect on the dynamic of lipid hydrocarbon chain. And the membrane fusion rate increases with the amount of PE headgroup. Changing the degrees of unsaturation for both PE and PC headgroups has weak influence on the spontaneous curvature, but it would increase the dynamics of lipid hydrocarbon chain and decrease the bending modulus. And the membrane fusion rate was significantly decreased with increasing the degrees of unsaturation.
Consequently, we found out the relationships among membrane composition, membrane physical property and biological function. Changing headgroups and degrees of unsaturation has a significantly different effect on membrane fusion rate. We speculated that there are two mechanisms which can change the fusion rate of the cell membrane. We can promote or inhibit the membrane fusion rate by changing membrane elastic energy and the dynamics of lipid molecular. This may be one of the reasons why cell membranes contain many different kinds of lipids.
關鍵字(中) ★ 磷脂質
★ 自發曲率
★ 彎曲係數
★ 膜融合
關鍵字(英) ★ phospholipid
★ spontaneous curvature
★ bending modulus
★ membrane fusion
論文目次 摘要....................................................I
Abstract..............................................III
致謝....................................................V
目錄...................................................VI
圖目錄...............................................VIII
表目錄..................................................X
第一章 緒論.............................................1
1-1 細胞膜..............................................1
1-2 磷脂質..............................................3
1-3 細胞膜的彈性性質.....................................8
1-4 細胞膜的流動性......................................16
1-5 細胞膜融合..........................................19
1-6 實驗目的............................................22
第二章 實驗材料與方法....................................23
2-1 實驗材料............................................23
2-2 樣品製備............................................25
2-2-1 製備lipid dispersion solution-X-ray 繞射實驗......25
2-2-2 製備微脂體-電子自旋共振光譜儀與螢光光譜儀............27
2-3 實驗儀器............................................31
2-3-1 X光繞射實驗.......................................31
2-3-2電子自旋共振光譜儀..................................31
2-3-3螢光光譜儀.........................................31
2-4 脂質分子的靜態物理性質-X光繞射實驗....................32
2-4-1 X光繞射原理.......................................32
2-4-2 數據處理與分析....................................33
2-5 脂質分子的動態物理性質-電子自旋共振光譜儀..............35
2-5-1電子自旋共振光譜原理................................35
2-5-2數據處理與分析.....................................36
2-6 膜融合實驗-螢光光譜儀................................38
2-6-1 螢光光譜原理......................................38
2-6-2數據處理與分析.....................................39
第三章 結果.............................................40
3-1 自發曲率............................................40
3-1-1 不同頭基對自發曲率影響.............................51
3-1-2 不同雙鍵數對自發曲率影響............................52
3-2彎曲係數.............................................54
3-2-1 不同頭基對彎曲係數影響.............................58
3-2-2 不同雙鍵數對彎曲係數影響...........................60
3-3轉動相關時間.........................................62
3-3-1 不同頭基對轉動相關時間影響..........................68
3-3-2 不同雙鍵數對轉動相關時間影響........................70
3-4 膜融合率............................................72
3-4-1 不同頭基對膜融合率影響.............................74
3-4-2 不同雙鍵數對膜融合率影響...........................75
第四章 討論.............................................76
4-1 不同頭基與雙鍵數對自發曲率影響........................76
4-2 脂質分子的動態速率與彈性性質的關係.....................78
4-3 細胞膜的物理性質與生物功能的影響......................80
第五章 結論.............................................87
參考文獻................................................89
參考文獻 [1] 陳立功 等著“生物化學” New wun ching developmental publishing co, Ltd, 2011.
[2] YEAGLE, Philip L. Lipids. Encyclopedia of life sciences & John Wiley & Sons, Ltd, 2009.
[3] KULKARNI, Chandrashekhar V. Lipid crystallization: from self-assembly to hierarchical and biological ordering. Nanoscale, 2012, 4.19: 5779-5791.
[4] KOYNOVA, R.; TENCHOV, B. Transitions between lamellar and non-lamellar phases in membrane lipids and their physiological roles. OA Biochemistry, 2013, 1: 1-9.
[5] JOUHET, Juliette. Importance of the hexagonal lipid phase in biological membrane organization. Frontiers in plant science, 2013, 4.
[6] KULKARNI, Chandrashekhar V., et al. Engineering bicontinuous cubic structures at the nanoscale—the role of chain splay. Soft Matter, 2010, 6.14: 3191-3194.
[7] SPECTOR, Arthur A.; YOREK, Mark A. Membrane lipid composition and cellular function. Journal of lipid research, 1985, 26.9: 1015-1035.
[8] VAN MEER, Gerrit; VOELKER, Dennis R.; FEIGENSON, Gerald W. Membrane lipids: where they are and how they behave. Nature reviews molecular cell biology, 2008, 9.2: 112-124.
[9] JAHN, Reinhard; GRUBMÜLLER, Helmut. Membrane fusion. Current opinion in cell biology, 2002, 14.4: 488-495.
[10] SHEARMAN, G. C., et al. Inverse lyotropic phases of lipids and membrane curvature. Journal of Physics: Condensed Matter, 2006, 18.28: 1105.
[11] HELFRICH, Wolfgang. Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung C, 1973, 28.11-12: 693-703.
[12] KOLLMITZER, Benjamin, et al. Monolayer spontaneous curvature of raft-forming membrane lipids. Soft matter, 2013, 9.45: 10877-10884.
[13] YAGHMUR, Anan, et al. Effects of Pressure and Temperature on the Self-Assembled Fully Hydrated Nanostructures of Monoolein− Oil Systems. Langmuir, 2009, 26.2: 1177-1185.
[14] CZESLIK, C., et al. Temperature-and pressure-dependent phase behavior of monoacylglycerides monoolein and monoelaidin. Biophysical journal, 1995, 68.4: 1423-1429.
[15] CONN, Charlotte E., et al. A pressure-jump time-resolved x-ray diffraction study of cubic-cubic transition kinetics in monoolein. Langmuir, 2008, 24.6: 2331-2340.
[16] EPAND, R. M.; FULLER, N.; RAND, R. P. Role of the position of unsaturation on the phase behavior and intrinsic curvature of phosphatidylethanolamines. Biophysical journal, 1996, 71.4: 1806.
[17] ISRAELACHVILI, Jacob N. Intermolecular and Surface Forces: With Applications to Colloidal and Biological Systems (Colloid Science). 1992.
[18] SINGER, S. J.; NICOLSON, Garth L. The fluid mosaic model of the structure of cell membranes. Day and Good Membranes and viruses in immunopathology, 1972, 7-47.
[19] CHEN, Z.; RAND, R. P. The influence of cholesterol on phospholipid membrane curvature and bending elasticity. Biophysical journal, 1997, 73.1: 267.
[20] RUBENSTEIN, J. L.; SMITH, Barton A.; MCCONNELL, Harden M. Lateral diffusion in binary mixtures of cholesterol and phosphatidylcholines. Proceedings of the National Academy of Sciences, 1979, 76.1: 15-18.
[21] MARGUET, Didier, et al. Dynamics in the plasma membrane: how to combine fluidity and order. The EMBO journal, 2006, 25.15: 3446-3457.
[22] SCHROIT, A. J.; GALLILY, R. Macrophage fatty acid composition and phagocytosis: effect of unsaturation on cellular phagocytic activity. Immunology, 1979, 36.2: 199.
[23] FILIPPOV, Andrey; ORÄDD, Greger; LINDBLOM, Göran. Effect of NaCl and CaCl2 on the lateral diffusion of zwitterionic and anionic lipids in bilayers. Chemistry and physics of lipids, 2009, 159.2: 81-87.
[24] CHEN, Y.-F., et al. Differential dependencies on [Ca2+] and temperature of the monolayer spontaneous curvatures of DOPE, DOPA and cardiolipin: effects of modulating the strength of the inter-headgroup repulsion. Soft matter, 2015, 11.20: 4041-4053.
[25] MARSDEN, Hana Robson; TOMATSU, Itsuro; KROS, Alexander. Model systems for membrane fusion. Chemical Society Reviews, 2011, 40.3: 1572-1585.
[26] OHKI, Shinpei; ARNOLD, Klaus. A mechanism for ion-induced lipid vesicle fusion. Colloids and Surfaces B: Biointerfaces, 2000, 18.2: 83-97.
[27] PAPAHADJOPOULOS, D., et al. Studies on membrane fusion. III. The role of calcium-induced phase changes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1977, 465.3: 579-598.
[28] HUI, S. W., et al. Use of poly (ethylene glycol) to control cell aggregation and fusion. Colloids and Surfaces B: Biointerfaces, 1999, 14.1: 213-222.
[29] MALININ, Vladimir S.; FREDERIK, Peter; LENTZ, Barry R. Osmotic and curvature stress affect PEG-induced fusion of lipid vesicles but not mixing of their lipids. Biophysical journal, 2002, 82.4: 2090-2100.
[30] KÄSBAUER, M.; LASIC, D. D.; WINTERHALTER, M. Polymer induced fusion and leakage of small unilamellar phospholipid vesicles: effect of surface grafted polyethylene-glycol in the presence of free PEG. Chemistry and physics of lipids, 1997, 86.2: 153-159.
[31] CHERNOMORDIK, Leonid. Non-bilayer lipids and biological fusion intermediates. Chemistry and physics of lipids, 1996, 81.2: 203-213.
[32] YANG, Q., et al. Effects of lipid headgroup and packing stress on poly (ethylene glycol)-induced phospholipid vesicle aggregation and fusion. Biophysical journal, 1997, 73.1: 277.
[33] HARROUN, Thad A., et al. Neutron and X-ray scattering for biophysics and biotechnology: examples of self-assembled lipid systems. Soft Matter, 2009, 5.14: 2694-2703.
[34] HARPER, Paul E., et al. X-Ray diffraction structures of some phosphatidylethanolamine lamellar and inverted hexagonal phases. Biophysical journal, 2001, 81.5: 2693-2706.
[35] BENIAL, A. Milton Franklin; DHAS, M. Kumara; JAWAHAR, A. Rotational Correlation Time Studies on Nitroxyl Radicals Using 300 MHz ESR Spectrometer in High Viscous Liquid. Applied Magnetic Resonance, 2011, 40.3: 311-319.
[36] WILSCHUT, Jan, et al. Studies on the mechanism of membrane fusion: kinetics of calcium ion induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle contents. Biochemistry, 1980, 19.26: 6011-6021.
[37] BURGESS, Stephen W., et al. Polyethylene glycol-induced lipid mixing but not fusion between synthetic phosphatidylcholine large unilamellar vesicles. Biochemistry, 1991, 30.17: 4193-4200.
[38] TEMPLER, Richard H.; KHOO, Bee J.; SEDDON, John M. Gaussian curvature modulus of an amphiphilic monolayer. Langmuir, 1998, 14.26: 7427-7434.
[39] KIRK, G. L.; GRUNER, Sol M. Lyotropic effects of alkanes and headgroup composition on the Lα-HII lipid liquid crystal phase transition: hydrocarbon packing versus intrinsic curvature. Journal de Physique, 1985, 46.5: 761-769.
[40] Rappolt, Michael, et al. "Conformational and hydrational properties during the Lβ-to Lα-and Lα-to HII-phase transition in phosphatidylethanolamine." Chemistry and physics of lipids, 2008, 154.1: 46-55.
[41] FULLER, Nola; BENATTI, Carlos R.; RAND, R. Peter. Curvature and bending constants for phosphatidylserine-containing membranes. Biophysical journal, 2003, 85.3: 1667-1674.
[42] RAND, R. P., et al. Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress. Biochemistry, 1990, 29.1: 76-87.
[43] LEIKIN, S., et al. Measured effects of diacylglycerol on structural and elastic properties of phospholipid membranes. Biophysical journal, 1996, 71.5: 2623.
[44] KOOIJMAN, Edgar E., et al. Spontaneous curvature of phosphatidic acid and lysophosphatidic acid. Biochemistry, 2005, 44.6: 2097-2102.
[45] SZULE, Joseph A.; FULLER, Nola L.; RAND, R. Peter. The effects of acyl chain length and saturation of diacylglycerols and phosphatidylcholines on membrane monolayer curvature. Biophysical journal, 2002, 83.2: 977-984.
[46] ALLEY, Stephen H., et al. X-ray diffraction measurement of the monolayer spontaneous curvature of dioleoylphosphatidylglycerol. Chemistry and physics of lipids, 2008, 154.1: 64-67.
[47] GRUNER, Sol M.; PARSEGIAN, V. Adrian; RAND, R. Peter. Directly measured deformation energy of phospholipid HII hexagonal phases. Faraday discussions of the Chemical Society, 1986, 81: 29-37.
[48] FULLER, N.; RAND, R. P. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophysical journal, 2001, 81.1: 243-254.
[49] SZULE, Joseph A.; RAND, R. P. The effects of gramicidin on the structure of phospholipid assemblies. Biophysical journal, 2003, 85.3: 1702-1712.
[50] KOZLOV, Michael M. Determination of lipid spontaneous curvature from X-ray examinations of inverted hexagonal phases. In: Methods in Membrane Lipids. Humana Press, 2007, 355-366.
[51] ROOZEN, M. J. G. W.; HEMMINGA, M. A. Molecular motion in sucrose-water mixtures in the liquid and glassy state as studied by spin probe ESR. Journal of Physical Chemistry, 1990, 94.18: 7326-7329.
[52] MARSH, Derek. Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. Biophysical journal, 2007, 93.11: 3884-3899.
[53] MARSH, Derek. Pivotal surfaces in inverse hexagonal and cubic phases of phospholipids and glycolipids. Chemistry and physics of lipids, 2011, 164.3: 177-183.
[54] FAN, Z-A. The correlation among spontaneous curvature, metal ions binding and membrane fusion of liposomes. 2015.
[55] LINDBLOM, Göran; ORÄDD, Greger. Lipid lateral diffusion and membrane heterogeneity. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2009, 1788.1: 234-244.
指導教授 陳儀帆(Yi-fan Chen) 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明