博碩士論文 102324066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:18.191.135.224
姓名 張雯芳(Wen-Fang Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 添加具有抗菌潛力的胜肽對磷脂質自組裝結構與彈性性質的影響
(INFLUENCES OF ANTIMICROBIAL-POTENT PEPTIDES ON THE STRUCTURES AND ELASTIC PROPERTIES OF THE PHOSPHOLIPID SELF-ASSEMBLIES)
相關論文
★ 雙連續相中孔二氧化鈦光催化以及電子結構之實驗與模擬研究★ 聚合物-奈米粒子複合材料在玻璃轉移溫度下的結構與動力學相關性之實驗與模擬研究
★ 新興糖基雙子型界面活性劑之結構以及其對基因轉染效率之影響★ 自發曲率、金屬離子吸附以及微脂體膜融合效率三者間之相關性探討
★ 脂質組成成分對細胞膜物理性質與生物功能的影響★ 分子構型與表面電荷密度對雙子型陰陽離子界面活性劑系統之相行為影響
★ 探討具有不同間隔長度的陰、陽離子雙子型界面活性劑對於DNA壓實與解壓實之影響★ 具抗菌潛力之胜肽如何影響脂質膜的彈性性質與結構完整性
★ CoCrFeMnNi 高熵合金 形變行為之探討★ 透過改變磷脂質排列密度減少Amyloid β與膜之間交互作用
★ 對生物膜具活性的胜肽誘導相分離脂質膜產生結構上擾動★ 人類脂肪幹細胞於生醫材料塗佈細胞外間質之純化及分化
★ 發展量測雙層脂質膜的排列密度之實驗技術★ 利用酸鹼度敏感型雙子型界面活性劑製作之基因載體對核內體脂質膜結構之影響
★ 開發預測雙子型界面活性劑之自組裝結構的方法★ 抗肌萎縮蛋白的膜結合錨如何影響其與脂質膜的相互作用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 抗菌肽(Antimicrobial peptides)為生物體先天性免疫反應的一環,可對抗病原體及癌細胞,且其透過擾動細胞膜的方式作用,較不易產生抗藥性,因此被認為是具有潛力的新式抗生藥物。為更瞭解抗菌肽與細胞膜的作用機制,本實驗探討了抗菌肽中富含最多的胺基酸-精胺酸(arginine, R)對磷脂質(phospholipids)自組裝結構的物理及結構性質的影響,並從中進一步討論peptide對磷脂質膜的擾動機制。本實驗使用了4種poly-Arginine peptide ─ R6、R9、R6C及R9C,以探討不同poly-Arginine peptide的長度及其尾端接上另一胺基酸 ─ Cysteine對磷脂質自組裝結構的影響。本研究利用2種不同的磷脂質自組裝結構(self-assembled structure)進行實驗:我們首先選用了易形成inverted hexagonal phase的1,2-dioleoyl-sn-glycero-3-phosphoethanolamine(DOPE)進行實驗,並利用Small-Angle X-Ray Scattering(SAXS)探討添加peptide對DOPE彈性性質(elastic properties)的作用。另一方面,為了瞭解peptide如何影響細胞膜(cell membrane),我們亦使用24 mol% DOPE/72 mol% 1,2-dioleoyl-sn-glycero-3-phosphocholine(DOPC)/4 mol% 1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phosphate(DOPA)製備模擬細胞膜的微脂體(liposome),以探討peptide如何改變liposome的膜厚及結構穩定性。實驗結果發現,R6、R9、R6C的添加會使得DOPE自組裝結構的一項彈性性質 ─ spontaneous curvature變小,而R9C則會使其變大;另一方面, bending modulus這項彈性性質則會因R6及R6C的添加而變小(意即膜變得較為柔軟),因R9的添加而變大(意即膜變得較為堅硬)。我們根據實驗結果了解:(1)親水性的poly-Arginine peptide確實可與不帶淨電荷的磷脂質 ─ DOPE相互作用;(2)不同的poly-Arginine peptide對DOPE自組裝結構之spontaneous curvature及bending modulus的影響可能與其嵌入該自組裝結構的深度有關;(3)不同長度之poly-Arginine peptide可能以不同的機制對liposome的結構進行擾動。
摘要(英) Antimicrobial peptides are important players in the immune systems and exert their influences mainly through their interactions with biomembranes. Due to their high efficiency in killing diverse invading molecules/organisms and low vulnerability to the drug resistance, antimicrobial peptides have drawn considerable attention and been regarded as promising candidates for the therapeutics of next generation. In order to improve our understanding toward the mechanisms underlying the interactions between antimicrobial peptides and biomembranes, this thesis work studied how the amino acid enriched in antimicrobial peptides, arginine, affects the physical and structural properties of phospholipid self-assemblies. Four types of poly-arginine peptides, R6, R9, R6C and R9C, were chosen for this study to scrutinize how the peptide chain length and the addition of the amino acid, cysteine, to the C-termini of the peptides modulate the properties of a phospholipid self-assembly. Two self-assembled structures were prepared for our research: First, the inverted hexagonal phase, prepared with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) was required for the small-angle X-ray scattering (SAXS) measurements of the elastic properties; second, 24 mol% DOPE/72 mol% 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/4 mol% 1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phosphate (DOPA) were used to prepare the cell membrane-mimicking liposomes (unilamellar vesicle), with their membrane thickness and structural stability investigated in order to extract the information on how the peptides interact with cell membranes. Our experimental results indicate that the presence of R6, R9 and R6C decreased the spontaneous curvature (an elastic property, which quantified the tendency of forming nonlamellar phases of a lipid) of DOPE, whereas the bending modulus (another elastic property, which described how hard the membrane is against bending) of DOPE was increased (i.e., the phospholipid self-assembly was stiffened) upon the addition of R9 and decreased (i.e., the phospholipid self-assembly was softened) upon the addition of R6 and R6C. Based on our results, we conclude: (1) Poly-arginine peptides have considerable interactions with DOPE even though the peptides carry no hydrophobic residue and the lipid self-assembly is electrostatically neutral (both of which point to the lack of attractive forces between the peptides and the self-assemblies); (2) how the different poly-arginine peptides modulate the spontaneous curvature and the bending modulus is speculated to depend on the insertion depths into the lipid self-assemblies of the peptides; (3) different underlying mechanisms may be employed by the poly-arginine peptides of different chain lengths to disrupt the structures of liposomes.
關鍵字(中) ★ 抗菌肽
★ 磷脂質
★ 自組裝結構
★ 彈性性質
★ 小角度X光散射
★ 微脂體
關鍵字(英) ★ Antimicrobial peptides
★ phospholipids
★ Self-Assemblies
★ Elastic Properties
★ Small-Angle X-Ray Scattering(SAXS)
★ liposome
論文目次 摘 要...................................................I
Abstract..............................................III
致 謝...................................................V
目錄..................................................VII
圖目錄..................................................X
表目錄...............................................XVII
第一章 緒論...........................................1
1.1 細胞膜(Biomembrane)................................2
1.2 磷脂質(phospholipids)..............................5
1.3 抗菌肽(Antimicrobial peptides)....................11
1.4 抗菌胜肽與細胞膜作用機制..............................15
1.5 磷脂質自組裝結構(Self-assembled structure).........24
1.6 彈性性質(Elastic properties)......................29
1.6.1 自發曲率(Spontaneous curvature, C0).............30
1.6.2 彎曲係數(Bending modulus, Kcp)..................32
1.7 研究動機與目的......................................34
第二章 實驗材料及方法....................................35
2.1 實驗材料............................................35
2.1.1 磷脂質(Phospholipid)............................35
2.1.2 Peptide..........................................38
2.1.3 實驗藥品..........................................41
2.2 實驗器材............................................43
2.3 實驗儀器............................................45
2.4 實驗步驟............................................46
2.4.1 Dispersion (Reverse hexagonal phase, HII)........46
2.4.2 Liposome method..................................50
2.5 儀器分析............................................55
2.5.1 Small-Angle X-Ray Scattering(SAXS).............55
2.5.2 熱示差掃瞄卡量計(Differential scanning calorimetry, DSC)..................................................57
2.5.3 圓二色光谱(Circular dichroism spectroscopy, CD).59
2.5.4 螢光(Fluorescence)..............................61
2.6 X繞射實驗(X-ray diffraction)......................62
2.7 螢光洩漏實驗(Peptide-induced membrane leakage).....64
2.8 滲透壓測量實驗(Peptide binding measurements).......65
2.9 數據處理與分析......................................66
2.9.1 重建HII phase電子雲密度(The electron density profile reconstruction of reverse hexagonal phase, HII )......66
2.9.2 量化自發曲率(Quantified of spontaneous curvature, C0)...................................................71
2.9.3 Liposome結構參數..................................73
第三章 結果.............................................78
3.1 Peptide對DOPE spontaneous curvature的影響...........80
3.1.1 不同poly-Arg peptide對DOPE spontaneous curvature的影響.....................................................80
3.1.2 Indolicidin及SAP10-C對DOPE膜spontaneous curvature的影響...................................................84
3.2 Peptide對DOPE膜bending modulus(Kcp)的影響.........88
3.3 Peptide結構的變化...................................92
3.3.1 R6、R9及R6C的結構.................................92
3.3.2 Liposome的存在對peptide結構變化....................94
3.4 Peptide對liposome結構及膜厚(thickness)的影響.......96
3.5 Peptide對liposome結構穩定性的影響...................100
3.6 Peptide對DOPE膜thermotropic behavior的影響.........103
3.6.1 DOPE膜packing frustration影響...................103
3.6.2 Peptide對沒有packing frustration的DOPE膜的影響....105
3.6.3 Peptide對有packing frustration的DOPE膜之影響.....107
第四章 討論............................................109
4.1 Peptide與membrane的交互作用力......................110
4.2 添加peptide對DOPE膜的彈性能探討(Elastic energy of the DOPE membrane).......................................116
4.3 探討peptide與membrane作用機制......................118
第五章 結論............................................121
參考文獻 ..............................................124
參考文獻 1.Weete, John D. Lipid biochemistry of fungi and other organisms. Springer Science & Business Media, 2012.
2.Zasloff, Michael. "Antimicrobial peptides of multicellular organisms." nature 415.6870 (2002): 389-395.
3.Berk, Arnold, and S. Lawrence Zipursky. Molecular cell biology. Vol. 4. New York: WH Freeman, 2000.
4.Van Meer, Gerrit, Dennis R. Voelker, and Gerald W. Feigenson. "Membrane lipids: where they are and how they behave." Nature reviews molecular cell biology 9.2 (2008): 112-124.
5.Shai, Yechiel, and Ziv Oren. "From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides." Peptides 22.10 (2001): 1629-1641.
6.Schmidt, Nathan W., et al. "Criterion for amino acid composition of defensins and antimicrobial peptides based on geometry of membrane destabilization."Journal of the American Chemical Society 133.17 (2011): 6720-6727.
7.Hancock, Robert EW, and Gill Diamond. "The role of cationic antimicrobial peptides in innate host defences." Trends in microbiology 8.9 (2000): 402-410.
8.Nguyen, Leonard T., Evan F. Haney, and Hans J. Vogel. "The expanding scope of antimicrobial peptide structures and their modes of action." Trends in biotechnology 29.9 (2011): 464-472
9.Huang, Huey W. "Action of antimicrobial peptides: two-state model."Biochemistry 39.29 (2000): 8347-8352.
10.Ganz, Tomas, et al. "Defensins. Natural peptide antibiotics of human neutrophils." Journal of Clinical Investigation 76.4 (1985): 1427-35
11.Stciner, H., et al. "Séquence and spe-cificity of two antibacterial proteins involved in insect immunity." Nature 292 (1981): 246-8.
12.Zasloff, Michael. "Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor." Proceedings of the National Academy of Sciences84.15 (1987): 5449-5453.
13.Mor, Amram, et al. "Isolation, amino acid sequence and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin." Biochemistry30.36 (1991): 8824-8830.
14.HABERMANN, ERNST, and JOACHIM JENTSCH. "Sequenzanalyse des Melittins aus den tryptischen und peptischen Spaltstücken." Hoppe-Seyler´ s Zeitschrift für physiologische Chemie 348.1 (1967): 37-50.
15.Shai, Yechiel, et al. "Sequencing and synthesis of pardaxin, a polypeptide from the Red Sea Moses sole with ionophore activity." FEBS letters 242.1 (1988): 161-166.
16.Oren, Ziv, and Yechiel Shai. "A Class of Highly Potent Antibacterial Peptides Derived from Pardaxin, A Pore‐Forming Peptide Isolated from Moses Sole Fish Pardachirus marmoratus." European Journal of Biochemistry 237.1 (1996): 303-310.
17.Johansson, Jan, et al. "Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37." Journal of Biological Chemistry 273.6 (1998): 3718-3724.
18.Lee, Ming-Tao, et al. "Many-body effect of antimicrobial peptides: on the correlation between lipid’s spontaneous curvature and pore formation."Biophysical journal 89.6 (2005): 4006-4016.
19.Brogden, Kim A. "Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?." Nature Reviews Microbiology 3.3 (2005): 238-250.
20.Yang, Lin, et al. "Barrel-stave model or toroidal model? A case study on melittin pores." Biophysical journal 81.3 (2001): 1475-1485.
21.Lee, Ming-Tao, et al. "Process of inducing pores in membranes by melittin."Proceedings of the National Academy of Sciences 110.35 (2013): 14243-14248.
22.Chan, David I., Elmar J. Prenner, and Hans J. Vogel. "Tryptophan-and arginine-rich antimicrobial peptides: structures and mechanisms of action." Biochimica et Biophysica Acta (BBA)-Biomembranes 1758.9 (2006): 1184-1202.
23.Miteva, Maria, et al. "Molecular electroporation: a unifying concept for the description of membrane pore formation by antibacterial peptides, exemplified with NK-lysin." FEBS letters 462.1 (1999): 155-158.
24.Yaghmur, Anan, et al. "Tuning curvature and stability of monoolein bilayers by designer lipid-like peptide surfactants." (2007): e479.
25.Chavarha, Mariya, et al. "Differential effects of the hydrophobic surfactant proteins on the formation of inverse bicontinuous cubic phases." Langmuir28.48 (2012): 16596-16604.
26.Schmidt, Nathan W., et al. "Arginine in α-Defensins DIFFERENTIAL EFFECTS ON BACTERICIDAL ACTIVITY CORRESPOND TO GEOMETRY OF MEMBRANE CURVATURE GENERATION AND PEPTIDE-LIPID PHASE BEHAVIOR." Journal of Biological Chemistry 287.26 (2012): 21866-21872.
27.Koller, Daniel, and Karl Lohner. "The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes." Biochimica et Biophysica Acta (BBA)-Biomembranes 1838.9 (2014): 2250-2259.
28.Eeman, Marc, and Magali Deleu. "From biological membranes to biomimetic model membranes." Base (2010):719-736
29.Luzzati, V., and F. Husson. "The structure of the liquid-crystalline phases of lipid-water systems." The Journal of cell biology 12.2 (1962): 207-219.
30.Chen, Z., and R. P. Rand. "The influence of cholesterol on phospholipid membrane curvature and bending elasticity." Biophysical journal 73.1 (1997): 267.
31.Szule, Joseph A., and R. P. Rand. "The effects of gramicidin on the structure of phospholipid assemblies." Biophysical journal 85.3 (2003): 1702-1712.
32.Roe, R. J. "Methods of X-ray and neutron scattering in polymer science. 2000." p 155.
33.PERKIN ELMER 熱示差掃瞄卡量計 DSC 的原理, http://www.aandb.com.cn/script/edfile/2008/10/20081016-221602-33944798.pdf
34.Johnson, W. Curtis. "Protein secondary structure and circular dichroism: a practical guide." Proteins: Structure, Function, and Bioinformatics 7.3 (1990): 205-214.
35.Applied Photophysics, Circular dichroism and the study of biological molecules. http://www.photophysics.com/tutorials/circular-dichroism-cd-spectroscopy/3-chirality-and-biology.
36.Valeur, Bernard, and Mário Nuno Berberan-Santos. Molecular fluorescence: principles and applications. John Wiley & Sons, 2012.
37.Cioni, Patrizia, and Giovanni B. Strambini. "Tryptophan phosphorescence and pressure effects on protein structure." Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1595.1 (2002): 116-130.
38.Wilschut, Jan, et al. "Studies on the mechanism of membrane fusion: kinetics of calcium ion induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle contents." Biochemistry 19.26 (1980): 6011-6021.
39.Xia, Yuqiong, Jianbo Sun, and Dehai Liang. "Aggregation, fusion, and leakage of liposomes induced by peptides." Langmuir 30.25 (2014): 7334-7342.
40.Stanley, Christopher B., and Helmut H. Strey. "Measuring osmotic pressure of poly (ethylene glycol) solutions by sedimentation equilibrium ultracentrifugation." Macromolecules 36.18 (2003): 6888-6893.
41.Chen, Y-F., et al. "Differential dependencies on [Ca 2+] and temperature of the monolayer spontaneous curvatures of DOPE, DOPA and cardiolipin: effects of modulating the strength of the inter-headgroup repulsion." Soft matter 11.20 (2015): 4041-4053.
42.Harper, Paul E., et al. "X-Ray diffraction structures of some phosphatidylethanolamine lamellar and inverted hexagonal phases*."Biophysical journal 81.5 (2001): 2693-2706.
43.Kollmitzer, Benjamin, et al. "Monolayer spontaneous curvature of raft-forming membrane lipids." Soft matter 9.45 (2013): 10877-10884.
44.Turner, David C., and Sol M. Gruner. "X-ray diffraction reconstruction of the inverted hexagonal (HII) phase in lipid-water systems." Biochemistry 31.5 (1992): 1340-1355.
45.Rand, R. P., et al. "Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress." Biochemistry 29.1 (1990): 76-87.
46.Leikin, S., et al. "Measured effects of diacylglycerol on structural and elastic properties of phospholipid membranes." Biophysical journal 71.5 (1996): 2623-3632.
47.Fuller, Nola, Carlos R. Benatti, and R. Peter Rand. "Curvature and bending constants for phosphatidylserine-containing membranes." Biophysical journal85.3 (2003): 1667-1674.
48.Marsh, Derek. "Pivotal surfaces in inverse hexagonal and cubic phases of phospholipids and glycolipids." Chemistry and physics of lipids 164.3 (2011): 177-183.
49.Pabst, Georg, et al. "Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality x-ray data." Physical Review E62.3 (2000): 4000.
50.Pabst, Georg, et al. "Structural analysis of weakly ordered membrane stacks."Applied Crystallography 36.6 (2003): 1378-1388.
51.PABST, GEORG. "Global properties of biomimetic membranes: perspectives on molecular features." Biophysical Reviews and Letters 1.01 (2006): 57-84.
52.Masum, Shah Md, et al. "Effect of positively charged short peptides on stability of cubic phases of monoolein/dioleoylphosphatidic acid mixtures."Langmuir 21.12 (2005): 5290-5297.
53.Sen, Chandan K., and Lester Packer. "Thiol homeostasis and supplements in physical exercise." The American journal of clinical nutrition 72.2 (2000): 653s-669s.
54.W³odek, Lidia. "Beneficial and harmful effects of thiols." Pol. J. Pharmacol 54 (2002): 215-223.
55.Kucerka, Norbert, et al. "Curvature effect on the structure of phospholipid bilayers." Langmuir 23.3 (2007): 1292-1299.
56.Klajnert, B., et al. "DSC studies on interactions between low molecular mass peptide dendrimers and model lipid membranes." International journal of pharmaceutics 327.1 (2006): 145-152.
57.Mishra, Abhijit, et al. "Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions." Proceedings of the National Academy of Sciences 108.41 (2011): 16883-16888.
58.Masum, Shah Md, et al. "Effect of de novo designed peptides interacting with the lipid-membrane interface on the stability of the cubic phases of the monoolein membrane." Langmuir 19.11 (2003): 4745-4753.
59.Mitchell, Dennis J., et al. "Polyarginine enters cells more efficiently than other polycationic homopolymers." The Journal of Peptide Research 56.5 (2000): 318-325.
60.Zemel, Assaf, Avinoam Ben-Shaul, and Sylvio May. "Modulation of the spontaneous curvature and bending rigidity of lipid membranes by interfacially adsorbed amphipathic peptides." The Journal of Physical Chemistry B 112.23 (2008): 6988-6996.
61.Campelo, Felix, Harvey T. McMahon, and Michael M. Kozlov. "The hydrophobic insertion mechanism of membrane curvature generation by proteins." Biophysical journal 95.5 (2008): 2325-2339.
62.Brown, Michael F. "Curvature forces in membrane lipid–protein interactions."Biochemistry 51.49 (2012): 9782-9795.
63.Herce, H. D., et al. "Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides." Biophysical journal 97.7 (2009): 1917-1925.
64.邱忠憲 (2015) “組成成分與溫度對生物膜彈性性質的影響”, 國立中央大學/物理學系生物物理碩士班/103 年度/碩士論文
65.Huang, Huey W., Fang-Yu Chen, and Ming-Tao Lee. "Molecular mechanism of peptide-induced pores in membranes." Physical review letters 92.19 (2004): 198304.
66.Galdiero, Stefania, et al. "Peptide-lipid interactions: experiments and applications." International journal of molecular sciences 14.9 (2013): 18758-18789.
67.Sanderson, John M. "Peptide–lipid interactions: insights and perspectives." Organic & biomolecular chemistry 3.2 (2005): 201-212.
68.Pokorny, Antje, and Paulo FF Almeida. "Permeabilization of raft-containing lipid vesicles by δ-lysin: a mechanism for cell sensitivity to cytotoxic peptides." Biochemistry 44.27 (2005): 9538-9544.
69.Pokorny, Antje, and Paulo FF Almeida. "Kinetics of dye efflux and lipid flip-flop induced by δ-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, α-helical peptides." Biochemistry 43.27 (2004): 8846-8857.
70.Buffet-Bataillon, Sylvie, et al. "Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds—a critical review." International journal of antimicrobial agents 39.5 (2012): 381-389.
71.Cushnie, TP Tim, and Andrew J. Lamb. "Recent advances in understanding the antibacterial properties of flavonoids." International journal of antimicrobial agents 38.2 (2011): 99-107.]
72.Frankel, Edwin Nessim. Lipid oxidation. Elsevier, 2014.
73.Akbarzadeh, Abolfazl, et al. "Liposome: classification, preparation, and applications." Nanoscale Res Lett 8.1 (2013): 102.
74.Allen, Theresa M., and Pieter R. Cullis. "Liposomal drug delivery systems: from concept to clinical applications." Advanced drug delivery reviews 65.1 (2013): 36-48.
指導教授 陳儀帆(Yi-Fan Chen) 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明