博碩士論文 102326001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.238.184.78
姓名 張雅雯(Ya-wen Chang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 運用金奈米粒子/單壁奈米碳管複合材料修飾電極進行砷(ІІІ)之伏安法分析
(Voltammetric determination of arsenic (ІІІ) using gold nanoparticles / single walled carbon nanotubes composite-modified electrode)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用化學還原法及電鍍沉積法,以SWCNT為載體,透過前驅物四氯化金酸(HAuCl4),製備GNP/SWCNT複合材料,進行材料特性分析與As(III)之伏安法分析。特性分析的部分,觀察材料的表面特性、表面積與孔洞大小、晶相變化、元素組成、官能基與製備條件在伏安法分析表現之影響,選出最佳金奈米粒子與奈米碳管合成比例。根據UHR-SEM與TEM觀察得知,金奈米粒子會隨著濃度高低附著或包覆於奈米碳管上,特別是電鍍形成的金奈米顆粒約2-5 nm,較容易均勻控制大小與分散於碳管表面。伏安法分析的同時也發現2-5 nm顆粒大小的金奈米顆粒測定As(III)造成的氧化峰電流最為尖銳,碳管能放大氧化峰電流值約3.8倍。後續以最佳比例進行As(III)之伏安法分析,選定最佳掃描條件,如掃速、pH。以及觀察修飾電極在掃描電位範圍上的限制,探討氧化峰電流與濃度之間的關係。結果顯示電鍍複合材料修飾電極以LSV測定50-5000 μg/L As(III),得到良好濃度與電流的線性關係。最後推測干擾物Cu(II)對As(III)伏安法分析的影響與記憶效應。發現以LSV偵測As(III)及Cu(II)氧化峰電流的優點在於無明顯的記憶效應。具有開發線上即時監測放流水中As(III)之潛力與應用價值。
摘要(英) Gold nanoparticle/SWCNT (GNP/SWCNT) composites were synthesized via chemical reduction and electro-plating using HAuCl4 as precursor. The surface characteristics of GNP/SWCNT, such as surface area as well as pore size, crystallinity, elemental composition, and functional groups were examined. From SEM and TEM analysis, it was shown that GNP synthesized via electroplating were about 2-5 nm and evenly distributed on the surface of SWCNT. Besides, it was found that when GNP were about 2-5 nm, the oxidation peak of As(III) was the sharpest and the peak current was about 3.8 times larger than the GCE electrode coated with GNP only. The linear scanning voltammetry of As(III) at different concentrations showed that the peak current has good relationship to the concentration of As(III) in the range of 50-5000 μg/L. At last, the interference of copper and the memory effects were also investigated. It was found that when analyzing As(III) via LSV, the was not obvious interference of copper and the memory effects.
關鍵字(中) ★ 伏安法
★ 金奈米粒子
★ 單壁奈米碳管
★ As(III)
關鍵字(英) ★ voltammetry
★ gold nanoparticles
★ single-walled carbon nanotube
★ arsenic
論文目次 目錄
摘要 I
ABSTRACT II
謝誌 III
目錄 V
圖目錄 IX
表目錄 XII
第一章 前言 1
1.1. 研究緣起 1
1.2. 研究目的 2
1.3. 研究流程 3
第二章 文獻回顧 4
2.1. 砷的型態與偵測方法 4
2.2. 伏安法分析 9
2.2.1 電化學反應與系統 9
2.2.2 伏安法分析原理 11
2.2.3 伏安法分析無機砷原理與應用 19
2.2.4 伏安法分析無機砷的電極種類與修飾基材 20
2.3. 奈米碳管 38
2.3.1 奈米碳管基本材料結構 39
2.3.2 奈米碳管之電學特性 41
2.3.3 奈米碳管的純化與改質 45
2.3.4 奈米碳管表面改質後對於電化學訊號的影響 48
2.3.5 奈米碳管固定於電極表面分析應用 53
2.4. CNT/金屬複合材料 56
2.4.1 GNP/CNT之金屬催化特性 56
2.4.2 GNP/CNT製備方式 58
2.4.3 GNP/CNT複合材料進行砷之電化學分析應用 62
第三章 實驗方法 64
3.1 材料與設備 65
3.1.1 實驗設備 65
3.1.2 實驗材料 68
3.2 實驗方法 70
3.2.1 GNP/SWCNT複合材料製備 70
3.2.2 材料特性分析 72
3.2.3 GNP/SWCNT複合材料修飾電極之製備 74
3.2.4 伏安法對砷之分析 74
第四章 結果與討論 77
4.1. 材料特性鑑定分析 77
4.1.1 奈米碳管純化前後之特性分析 77
4.1.2 化學合成(CGNP/SWCNT)複合材料之特性分析 83
4.1.3 電鍍合成(EGNP/SWCNT)複合材料之特性分析 91
4.1.4 製備條件在伏安法分析表現之影響 94
4.2. 掃描條件確定 99
4.2.1伏安法分析As(ІІІ)之掃速選定 99
4.2.2伏安法分析As(ІІІ)之pH選定 102
4.3. 伏安法分析不同濃度As(III) 105
4.3.1 電位範圍的限制 105
4.3.2 氧化峰電流與濃度之間的關係 108
4.4. Cu之干擾 111
4.4.1 GNP/SWCNT電極對Cu(II)之伏安法分析 111
4.4.2 GNP/SWCNT電極對As(ІІІ)與Cu(II)之伏安法分析 113
4.5. 記憶效應 115
第五章 結論與建議 119
5.1. 結論 119
5.2. 建議 121
參考文獻 122
附錄 136

圖目錄
Fig. 1-1 研究流程 3
Fig. 2-1 25℃及1大氣壓下,水中砷物種之Eh-pH圖 6
Fig. 2-2 電化學反應的各種變因 9
Fig. 2-3 三電極電解槽系統 10
Fig. 2-4 循環伏安法之電位控制圖 14
Fig. 2-5 擴散控制之循環伏安圖 14
Fig. 2-6 吸附控制之循環伏安圖 16
Fig. 2-7 方波伏安法之波形圖 17
Fig. 2-8 循環伏安法之電流圖 17
Fig. 2-9 微分脈衝伏安法所施加之電位波形圖 18
Fig. 2-10 A→B氧化反應於裸電極、均相及非均相化學修飾電極示意圖 21
Fig. 2-11 近期偵測無機砷的修飾電極材料之發展 23
Fig. 2-12 透過自組裝膜(SAMs)於金電極放大電化學偵測As(III)訊號 25
Fig. 2-13 酶的反應序列偵測抑制As(V) 29
Fig. 2-14 碳管結構示意圖 40
Fig. 2-15 奈米碳管的結構二維平面石墨向量 42
Fig. 2-16 奈米碳管排列結構 42
Fig. 2-17 CNT改質之官能基化 47
Fig. 2-18 奈米碳管表面常見化學改質所引入之官能基 49
Fig. 2-19 SWCNT上羧基之還原氧化機制 50
Fig. 2-20 不同修飾電極分析cytochrome c之CV圖 51
Fig. 2-21 經由不同酸氧化劑處理後MWCNT之CV圖 53
Fig. 2-22 利用CNT/nafion/GCE電極分析不同濃度之多巴胺 54
Fig. 3-1 TEM基本構造儀器示意圖 66
Fig. 3-2 單壁奈米碳管的拉曼光譜圖 69
Fig. 3-3 電化學反應槽 75
Fig. 4-1 HUR-SEM單壁奈米碳之表面管束型態圖 79
Fig. 4-2 TEM單壁奈米碳管之管狀結構圖 80
Fig. 4-3 純化奈米碳管孔洞分佈圖 81
Fig. 4-4 純化前後SWCNT之FTIR圖譜 83
Fig. 4-5 不同SWCNT:GNP之CGNP/SWCNT之SEM影像 84
Fig. 4-6 不同SWCNT:GNP之CGNP/SWCNT之TEM影像 85
Fig. 4-7 X-ray繞射分析圖譜之CGNP/SWCNT 86
Fig. 4-8 化學合成法製程濾液之UV示意圖 89
Fig. 4-9 CGNP/SWCNT複合材料之FT-IR圖譜 91
Fig. 4-10 不同SWCNT:GNP之EGNP/SWCNT之SEM影像 92
Fig. 4-11 不同SWCNT:GNP之EGNP/SWCNT之TEM影像 93
Fig. 4-12不同濃度合成GNP複合材料修飾電極對5 mg/L As(ІІІ)LSV圖 97
Fig. 4-13 CGNP/SWCNT對As(ІІІ)不同掃速之影響 100
Fig. 4-14 EGNP/SWCNT對As(ІІІ)不同掃速之影響 101
Fig. 4-15 pH範圍0.47至12對5 mg/L As(ІІІ)之循環伏安圖 103
Fig. 4-16 5 mg/L As(III)在不同pH下之物種分布圖 104
Fig. 4-17 EGNP對不同濃度As(ІІІ)以-0.6 V至1V掃描範圍之CV圖 106
Fig. 4-18 EGNP對不同濃度As(ІІІ)以-0.4 V至0.4 V掃描範圍之CV圖 107
Fig. 4-19 CGNP/SWCNT對不同濃度As(ІІІ)之LSV圖 109
Fig. 4-20 EGNP/SWCNT對不同濃度As(ІІІ)之LSV圖 110
Fig. 4-21 不同濃度Cu(II)之LSV圖 112
Fig. 4-22 等量As(ІІІ)與Cu(II)之LSV圖 114
Fig. 4-23 固定5 mg/L As(ІІІ)與不同濃度Cu(II)之LSV圖 114
Fig. 4-24 EGNP/GCE同時對5 mg/L As(ІІІ)與Cu(ІІ)測試20次後觀察複合材料修飾電極的記憶效應 116
Fig. 4-25 CGNP/SWCNT/GCE同時對5 mg/L As(ІІІ)與Cu(ІІ)測試20次後觀察複合材料修飾電極的記憶效應 117
Fig. 4-26 EGNP/SWCNT/GCE同時對5 mg/L As(ІІІ)與Cu(ІІ)測試20次後觀察複合材料修飾電極的記憶效應 118

表目錄
Table 2-1 Esquina與Illapata村民頭髮中砷物種含量分析 5
Table 2-2 不同砷物種之游離常數(pKa) 6
Table 2-3 SWCNT和MWCNT的維度特性 40
Table 2-4 奈米碳管原子排列之結構與性質 42
Table 2-5 各種型態奈米碳管之特點及應用比較 44
Table 2-6 四種介面活性劑簡介 60
Table 4-1 單壁奈米碳管純化前後之元素半定量分析 81
Table 4-2 純化前後之Boehm titration官能基分析 82
Table 4-3 CGNP/SWCNT之元素半定量分析 87
Table 4-4 TEM與UV分析CGNP顆粒大小與文獻對照表 90
Table 4-5 EGNP/SWCNT之元素半定量分析 94
Table 4-6 CGNP/SWCNT分析5 mg/L As(ІІІ)之電容與電流值 97
Table 4-7 EGNP/SWCNT分析5 mg/L As(ІІІ)之電容與電流值 98
參考文獻 Alves, G. M., Magalhaes, J. M., Salaun, P., van den Berg, C. M., and Soares, H. M., "Simultaneous electrochemical determination of arsenic, copper, lead and mercury in unpolluted fresh waters using a vibrating gold microwire electrode", Analytica Chimica Acta, 703(1), 1-7 (2011).
Arslan, Y., Yildirim, E., Gholami, M., and Bakirdere, S., "Lower limits of detection in speciation analysis by coupling high-performance liquid chromatography and chemical-vapor generation", Trends in Analytical Chemistry, 30(4), 569-585 (2011).
Baby, T. T., and Ramaprabhu, S., "SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor", Talanta, 80(5), 2016-22 (2010).
Balasubramanian, K., and Burghard, M., "Electrochemically functionalized carbon nanotubes for device applications", Journal of Materials Chemistry, 18(26), 3071 (2008).
Bento, F. R., Grassi, M. T., Sales, A., and Mascaro, L. H., "Determination of Cu and As by stripping voltammetry in utility poles treated with chromated copper arsenate (Cca)", International Journal of Electrochemical Science, 3, 1523 - 1533 (2008).
Bonard, J. M., Stora, T., Salvetat, J. P., Maier, F., Stockli, T., Duschl, C., Forro, L., deHeer, W. A., and Chatelain, A., "Purification and size-selection of carbon nanotubes", Advanced Materials, 9(10), 827-831 (1997).
Brad, A. J., and Faulkner, I. R., "Electrochemichal method: fundaments and applications", Wily (New York), (2001).
Britto, P. J., Santhanam, K. S. V., and Ajayan, P. M., "Carbon nanotube electrode for oxidation of dopamine", Bioelectrochemistry and Bioenergetics, 41, 121-125 (1996).
Brown, A. P., and Anson, F. C., "Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface", Analytical Chemistry, 49(11), 1589–1595 (1997).
Brown, K. R., Walter, D. G., and Natan, M. J., "Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape", Chemistry of Materials, 12, 306-313 (2000).
Cai, Y., "Speciation and analysis of mercury, arsenic, and selenium by atomic £uorescence spectrometry", Trends in Analytical Chemistry, 19(1), 62-66 (2000).
Cepriá, G., Hamida, S., Laborda, F., and Castillo, J. R., "Direct reduction of As(V) physically attached to a graphite electrode mediated by Fe(III)", Journal of Applied Electrochemistry, 37(10), 1171-1176 (2007).
Cepriá, G., Hamida, S., Laborda, F., and Ramon Castillo, J., "Electroanalytical determination of arsenic(III) and total arsenic in 1 M HCl using a carbonaceous electrode without a reducing agent", Analytical Letters, 42(13), 1971–1985 (2009).
Chassaigne, H., Vacchina, V., and Lobinèski, R., "Elemental speciation analysis in biochemistry by electrospray mass spectrometry", Trends in Analytical Chemistry, 19(5), 300-313 (2000).
Chen, L., Zhou, N., Li, J., Chen, Z., Liao, C., and Chen, J., "Synergy of glutathione, dithiothreitol and N-acetyl-l-cysteine self-assembled monolayers for electrochemical assay: sensitive determination of arsenic(III) in environmental and drinking water", Analyst, 136(21), 4526 (2011).
Chen, X., Liu, Z. G., Zhao, Z. Q., Liu, J. H., and Huang, X. J., "SnO2 tube-in-tube nanostructures: Cu@C nanocable templated synthesis and their mutual interferences between heavy metal ions revealed by stripping voltammetry", Small, 9(13), 2233–2239 (2013).
Chin, C.-J. M., Shih, L.-C., Tsai, H.-J., and Liu, T.-K., "Adsorption of o-xylene and p-xylene from water by SWCNTs", Carbon, 45(6), 1254-1260 (2007).
Chin, C.-J. M., Shih, M.-W., and Tsai, H.-J., "Adsorption of nonpolar benzene derivatives on single-walled carbon nanotubes", Applied Surface Science, 256(20), 6035-6039 (2010).
Cornejo, L., Lienqueo, H., Arenas, M., Acarapi, J., Contreras, D., Yanez, J., and Mansilla, H. D., "In field arsenic removal from natural water by zero-valent iron assisted by solar radiation", Environmental Pollution, 156(3), 827-31 (2008).
Cortes-Salazar, F., Beggah, S., van der Meer, J. R., and Girault, H. H., "Electrochemical As(III) whole-cell based biochip sensor", Biosensors and Bioelectronics, 47, 237-42 (2013).
Coscia, U., Ambrosone, G., Ambrosio, A., Ambrosio, M., Bussolotti, F., Carillo, V., Grossi, V., Maddalena, P., Passacantando, M., Perillo, E., Raulo, A., and Santucci, S., "Photoconductivity of multiwalled CNT deposited by CVD", Solid State Sciences, 11(10), 1806-1809 (2009).
Cosnier, S., Mousty, C., Cui, X., Yang, X., and Dong, S., "Specific determination of As(V) by an acid phosphatase-polyphenol oxidase biosensor", Analytical Chemistry, 78, 4985-4989 (2006).
Cui, H., Yang, W., Li, X., Zhao, H., and Yuan, Z., "An electrochemical sensor based on a magnetic Fe3O4 nanoparticles and gold nanoparticles modified electrode for sensitive determination of trace amounts of arsenic(III)", Analytical Methods, 4, 4176–4181 This (2012).
Dai, X., and Compton, R. G., "Detection of As(III) via oxidation to As(V) using platinum nanoparticle modified glassy carbon electrodes: arsenic detection without interference from copper", Analyst, 131(4), 516-21 (2006).
Dai, X., Wildgoose, G. G., Salter, C., Crossley, A., and Compton, R. G., "Electroanalysis using macro-, micro-, and nanochemical architectures on electrode surfaces. Bulk surface modification of glassy carbon microspheres with gold nanoparticles and their electrical wiring using carbon nanotubes", Analytical Chemistry, 78, 6102-6108 (2006).
Daud, N., Yusof, N. A., Tee, T. W., and Abdullah, A. H., "Electrochemical sensor for As(III) utilizing CNTs/ Leucine/Nafion modified electrode", International Journal of Electrochemical Science, 7, 175 - 185 (2012).
Day, T. M., Unwin, P. R., Wilson, N. R., and Macpherson, J. V., "Electrochemical templating of metal nanoparticles and nanowires on single-walled carbon nanotube networks", Journal of the American Chemical Society, 127, 10639-10647 (2005).
de Carvalho, L. M., do Nascimento, P. C., Bohrer, D., Stefanello, R., Pilau, E. J., and da Rosa, M. B., "Redox Speciation of Inorganic Arsenic in Water and Saline Samples by Adsorptive Cathodic Stripping Voltammetry in the Presence of Sodium Diethyl Dithiocarbamate", Electroanalysis, 20(7), 776-781 (2008).
Demesmay, C., Olle, M., and Porthault, M., "Arsenic speciation by coupling high-performance liquid chromatography with inductively coupled plasma mass spectrometry", Journal of Analytical Chemistry, 348, 205-210 (1994).
Duan, L. S., Xu, Q., Xie, F., and Wang, S. F., "Hydrogen peroxide biosensor based on the bioelectrocatalysis of myoglobin incorporated in multi-walled carbon nanotubes/chitosan composite film", International Journal of Electrochemical Science, 3, 118-124 (2008).
Durán, P., Tartaj, J., Rubio, F., Moure, C., and Peña, O., "Synthesis and sintering behaviour of spinel-type CoxNiMn2−xO4 (0.2≤x≤1.2) prepared by the ethylene glycol–metal nitrate polymerized complex process", Ceramics International, 31(4), 599-610 (2005).
Ebbesen, T. W., Ajayan, P. M., Hiura, H., and Tanigaki, K., "Purification of nanotubes", Nature, 367(10), 519-519 (1994).
Ebbesen, T. W., Lezec, H. J., H., H., Bennett, J. W., Ghaemi, H. F., and Thio, T., "Electrical conductivity of individual carbon nanotubes", Nature, 382(4), 54-56 (1996).
El-sayed, M. A., "Some interesting properties of metals confined in time and nanometer space of different shapes", Accounts of Chemical Research, 34(4), 257-264 (2001).
Ensafi, A. A., Ring, A. C., and Fritsch, I., "Highly sensitive voltammetric speciation and determination of inorganic arsenic in water and alloy samples using ammonium 2-amino-1-cyclopentene-1-dithiocarboxylate", Electroanalysis, 22(11), 1175-1185 (2010).
Fuku, X., Iftikar, F., Hess, E., Iwuoha, E., and Baker, P., "Cytochrome c biosensor for determination of trace levels of cyanide and arsenic compounds", Analytica Chimica Acta, 730, 49-59 (2012).
Gamboa, J. C. M., Cornejo, L., and Squella, J. A., "Vibrating screen printed electrode of gold nanoparticle-modified carbon nanotubes for the determination of arsenic(III)", Journal of Applied Electrochemistry, 44(12), 1255-1260 (2014).
Gao, C., Yu, X. Y., Xiong, S. Q., Liu, J. H., and Huang, X. J., "Electrochemical detection of arsenic(III) completely free from noble metal: Fe3O4 microspheres-room temperature ionic liquid composite showing better performance than gold", Analytical Chemistry, 85(5), 2673-80 (2013).
Giacomino, A., Abollino, O., Lazzara, M., Malandrino, M., and Mentasti, E., "Determination of As(III) by anodic stripping voltammetry using a lateral gold electrode: experimental conditions, electron transfer and monitoring of electrode surface", Talanta, 83(5), 1428-35 (2011).
Gibbon-Walsh, K., Salaun, P., and van den Berg, C. M., "Arsenic speciation in natural waters by cathodic stripping voltammetry", Analytica Chimica Acta, 662(1), 1-8 (2010).
Gibbon-Walsh, K., Salaun, P., and van den Berg, C. M., "Determination of arsenate in natural pH seawater using a manganese-coated gold microwire electrode", Analytica Chimica Acta, 710, 50-7 (2012).
Go´mez-Ariza, J. L., Sa´nchez-Rodas, D., Gira´ldez, I., and Morales, E., "A comparison between ICP-MS and AFS detection for arsenic speciation in environmental samples", Talanta, 51, 257-268 (2000).
Gu, T., Bu, L., Huang, Z., Liu, Y., Tang, Z., Liu, Y., Huang, S., Xie, Q., Yao, S., Tu, X., Luo, X., and Luo, S., "Dual-signal anodic stripping voltammetric determination of trace arsenic(III) at a glassy carbon electrode modified with internal-electrolysis deposited gold nanoparticles", Electrochemistry Communications, 33, 43-46 (2013).
Guo, D. J., and Li, H. L., "Electrochemical synthesis of Pd nanoparticles on functional MWNT surfaces", Electrochemistry Communications, 6(10), 999-1003 (2004a).
Guo, D. J., and Li, H. L., "High dispersion and electrocatalytic properties of Pt nanoparticles on SWNT bundles", Journal of Electroanalytical Chemistry, 573(1), 197-202 (2004b).
Guo, D. J., and Li, H. L., "High dispersion and electrocatalytic properties of palladium nanoparticles on single-walled carbon nanotubes", Journal of Colloid and Interface Science, 286(1), 274-9 (2005).
Hassan, S. S., Sirajuddin, Solangi, A. R., Kazi, T. G., Kalhoro, M. S., Junejo, Y., Tagar, Z. A., and Kalwar, N. H., "Nafion stabilized ibuprofen–gold nanostructures modified screen printed electrode as arsenic(III) sensor", Journal of Electroanalytical Chemistry, 682, 77-82 (2012).
He, Z., Chen, J., Liu, D., Zhou, H., and Kuang, Y., "Electrodeposition of Pt–Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation", Diamond and Related Materials, 13(10), 1764-1770 (2004).
Heras, A., Colina, A., López-Palacios, J., Ayala, P., Sainio, J., Ruiz, V., and Kauppinen, E. I., "Electrochemical purification of carbon nanotube electrodes", Electrochemistry Communications, 11(7), 1535-1538 (2009).
Holloway, A. F., Wildgoose, G. G., Compton, R. G., Shao, L., and Green, M. L. H., "The influence of edge-plane defects and oxygen-containing surface groups on the voltammetry of acid-treated, annealed and “super-annealed” multiwalled carbon nanotubes", Journal of Solid State Electrochemistry, 12(10), 1337-1348 (2008).
Hrapovic, S., Liu, Y., and Luong, J. H. T., "Reusable platinum nanoparticle modified boron doped diamond microelectrodes for oxidative determination of arsenite", Analytical Chemistry, 79, 500-507 (2007).
Huan, T. N., Ganesh, T., Kim, K. S., Kim, S., Han, S. H., and Chung, H., "A three-dimensional gold nanodendrite network porous structure and its application for an electrochemical sensing", Biosensors and Bioelectronics, 27(1), 183-6 (2011).
Huang, J. F., and Chen, H. H., "Gold-nanoparticle-embedded nafion composite modified on glassy carbon electrode for highly selective detection of arsenic(III)", Talanta, 116, 852-9 (2013).
Hung, D. Q., Nekrassova, O., and Compton, R. G., "Analytical methods for inorganic arsenic in water: a review", Talanta, 64(2), 269-77 (2004).
Hunt, L. E., and Howard, A. G., "Arsenic speciation and distribution in the carnon estuary following the acute discharge of contaminated water from a disused mine", Marine Pollution Bulletin, 28(1), 33-38 (1994).
Iijima, S., "Helical microtubules of graphitic carbon", Nature, 354(7), 56-58 (1991).
Iijima, S., and Ichihashi, T., "Single-shell carbon nanotubes of 1-nm diameter", Nature, 363(17), 603-605 (1993).
Jena, B. K., and Raj, C. R., "Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury, and copper", Analytical Chemistry, 80, 4836–4844 (2008).
Jiajie, L., and Nagaosa, Y., "Cathodic stripping voltammetric determination of As(III) with in situ plated bismuth-film electrode using the catalytic hydrogen wave", Analytica Chimica Acta, 593(1), 1-6 (2007).
Joseph Berkmans, A., Ramakrishnan, S., Jain, G., and Haridoss, P., "Aligning carbon nanotubes, synthesized using the arc discharge technique, during and after synthesis", Carbon, 55, 185-195 (2013).
Khairy, M., Kampouris, D. K., Kadara, R. O., and Banks, C. E., "Gold nanoparticle modified screen printed electrodes for the trace sensing of arsenic(III) in the presence of copper(II)", Electroanalysis, 22(21), 2496-2501 (2010).
Khustenko, L. A., Tolmacheva, T. P., and Nazarov, B. F., "A rapid method of sample preparation for determining arsenic in water by stripping voltammetry", Journal of Analytical Chemistry, 64(11), 1136–1140 (2009).
Kim, Y. S., Yang, S. J., Lim, H. J., Kim, T., and Park, C. R., "A simple method for determining the neutralization point in Boehm titration regardless of the CO2 effect", Carbon, 50(9), 3315-3323 (2012).
Kruusenberg, I., Alexeyeva, N., Tammeveski, K., Kozlova, J., Matisen, L., Sammelselg, V., Solla-Gullón, J., and Feliu, J. M., "Effect of purification of carbon nanotubes on their electrocatalytic properties for oxygen reduction in acid solution", Carbon, 49(12), 4031-4039 (2011).
Lan, Y., Luo, H., Ren, X., Wang, Y., and Wang, L., "Glassy carbon electrode modified with citrate stabilized gold nanoparticles for sensitive arsenic (III) detection", Analytical Letters, 45(10), 1184-1196 (2012).
Leonor Contreras, M., Avila, D., Alvarez, J., and Rozas, R., "Computational algorithms for fast-building 3D carbon nanotube models with defects", Journal of Molecular Graphics and Modelling, 38, 389-95 (2012).
Li, D., Li, J., Jia, X., Han, Y., and Wang, E., "Electrochemical determination of arsenic(III) on mercaptoethylamine modified Au electrode in neutral media", Analytica Chimica Acta, 733, 23-27 (2012).
Liu, J., Rinzler, A. G., Dai, H. J., Hafner, J. H., Bradley, R. K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C. B., Rodriguez-Macias, F., Shon, Y. S., Lee, T. R., T., C. D., and Smalley, R. E., "Fullerene pipes", Science, 280, 1253-1256 (1998).
Liu, Y., Huang, Z., Xie, Q., Sun, L., Gu, T., Li, Z., Bu, L., Yao, S., Tu, X., Luo, X., and Luo, S., "Electrodeposition of electroreduced graphene oxide-Au nanoparticles composite film at glassy carbon electrode for anodic stripping voltammetric analysis of trace arsenic(III)", Sensors and Actuators B: Chemical, 188, 894-901 (2013).
Liu, Y., and Wei, W., "Layer-by-layer assembled DNA functionalized single-walled carbon nanotube hybrids for arsenic(III) detection", Electrochemistry Communications, 10(6), 872-875 (2008).
Liu, Z.-G., and Huang, X.-J., "Voltammetric determination of inorganic arsenic", Trends in Analytical Chemistry, 60, 25-35 (2014).
Liu, Z.-Q., Ma, J., Cui, Y.-H., Zhao, L., and Zhang, B.-P., "Influence of different heat treatments on the surface properties and catalytic performance of carbon nanotube in ozonation", Applied Catalysis B: Environmental, 101(1-2), 74-80 (2010).
Lu, J., Mullen, J. R., and Berill, S. J., "Purifying single-walled nanotubes", Nature, 383(24), 679-679 (1996).
Luo, H., Shi, Z., Li, N., Gu, Z., and Zhuang, Q., "Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode", Analytical Chemistry, 73, 915-920 (2001).
Luo, Y. B., Yu, Q. W., Yuan, B. F., and Feng, Y. Q., "Fast microextraction of phthalate acid esters from beverage, environmental water and perfume samples by magnetic multi-walled carbon nanotubes", Talanta, 90, 123-31 (2012).
Maensiri, S., Masingboon, C., Boonchom, B., and Seraphin, S., "A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white", Scripta Materialia, 56(9), 797-800 (2007).
Mahmoodi, N. M., "Synthesis of magnetic carbon nanotube and photocatalytic dye degradation ability", Environmental Monitoring and Assessment, 186(9), 5595-604 (2014).
Mandal, B. K., and T. Suzuki, K., "Arsenic round the world: a review", Talanta, 58, 201–235 (2002).
Mardegan, A., Scopece, P., Lamberti, F., Meneghetti, M., Moretto, L. M., and Ugo, P., "Electroanalysis of trace inorganic arsenic with gold nanoelectrode ensembles", Electroanalysis, 24(4), 798-806 (2012).
Michael, H. A., "An arsenic forecast for china", Science, 341, 852-853 (2013).
Moraes, F. C., Cabral, M. F., Mascaro, L. H., and Machado, S. A. S., "The electrochemical effect of acid functionalisation of carbon nanotubes to be used in sensors development", Surface Science, 605(3-4), 435-440 (2011).
Mouallem-Bahout, M., Bertrand, S., and Peña, O., "Synthesis and characterization of Zn1−xNixFe2O4 spinels prepared by a citrate precursor", Journal of Solid State Chemistry, 178(4), 1080-1086 (2005).
Munoz, E., and Palmero, S., "Analysis and speciation of arsenic by stripping potentiometry: a review", Talanta, 65(3), 613-20 (2005).
Murray, R. W., "Roses and raspberries", Analytical Chemistry, 82, 3405-3405 (2010).
Musameh, M., Wang, J., Merkoci, A., and Lin, Y., "Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes", Electrochemistry Communications, 4, 743–746 (2002).
Ning, Z., Lobdell, D. T., Kwok, R. K., Liu, Z., Zhang, S., Ma, C., Riediker, M., and Mumford, J. L., "Residential exposure to drinking water arsenic in Inner Mongolia, China", Toxicology and Applied Pharmacology, 222(3), 351-6 (2007).
Noskova, G. N., Zakharova, E. A., Kolpakova, N. A., and Kabakaev, A. S., "Electrodeposition and stripping voltammetry of arsenic(III) and arsenic(V) on a carbon black–polyethylene composite electrode in the presence of iron ions", Journal of Solid State Electrochemistry, 16, 2459–2472 (2012).
Ottakam Thotiyl, M. M., Basit, H., Sanchez, J. A., Goyer, C., Coche-Guerente, L., Dumy, P., Sampath, S., Labbe, P., and Moutet, J. C., "Multilayer assemblies of polyelectrolyte-gold nanoparticles for the electrocatalytic oxidation and detection of arsenic(III)", Journal of Colloid and Interface Science, 383(1), 130-9 (2012).
Pal, P., Bhattacharyay, D., Mukhopadhyay, A., and Sarkar, P., "The detection of mercury, cadium, and arsenic by the deactivation of urease on rhodinized carbon", Environmental engineering science, 26(1), 25-32 (2009).
Pan, B., and Xing, B., "Adsorption mechanisms of organic chemicals on carbon nanotubes", Environmental Science & Technology, 42(24), 9005-9013 (2008).
Piech, R., Bas, B., Niewiara, E., and Kubiak, W. W., "Determination of trace arsenic on hanging copper amalgam drop electrode", Talanta, 72(2), 762-7 (2007).
Prakash, S., Chakrabarty, T., Singh, A. K., and Shahi, V. K., "Silver nanoparticles built-in chitosan modified glassy carbon electrode for anodic stripping analysis of As(III) and its removal from water", Electrochimica Acta, 72, 157-164 (2012).
Profumo, A., Fagnoni, M., Merli, D., Quartarone, E., Protti, S., Dondi, D., and Albini, A., "Multiwalled carbon nanotube chemically modified gold electrode for inorganic As speciation and Bi(III) determination", Analytical Chemistry, 78, 4194-4199 (2006).
Rahman, M. R., Okajima, T., and Ohsaka, T., "Selective detection of As(III) at the Au(111)-like polycrystalline gold electrode", Analytical Chemistry, 82, 9169–9176 (2010).
Rajkumar, M., Chiou, S.-C., Chen, S.-M., and Thiagarajan, S., "A novel poly (taurine)/nano gold modified electrode for the determination of arsenic in various water samples", International Journal of Electrochemical Science, 6, 3789 - 3800 (2011).
Ramesha, G. K., and Sampath, S., "In-situ formation of graphene–lead oxide composite and its use in trace arsenic detection", Sensors and Actuators B: Chemical, 160(1), 306-311 (2011).
Rassaei, L., Sillanpää, M., French, R. W., Compton, R. G., and Marken, F., "Arsenite determination in phosphate media at electroaggregated gold nanoparticle deposits", Electroanalysis, 20(12), 1286-1292 (2008).
Rodríguez-Lado, L., Sun, G., Berg, M., Zhang, Q., Xue, H., Zheng, Q., and Johnson, C. A., "Groundwater arsenic contamination throughout China", Science, 341, 866-868 (2013).
Rosca, I. D., Watari, F., Uo, M., and Akasaka, T., "Oxidation of multiwalled carbon nanotubes by nitric acid", Carbon, 43(15), 3124-3131 (2005).
Salaun, P., Gibbon-Walsh, K. B., Alves, G. M., Soares, H. M., and van den Berg, C. M., "Determination of arsenic and antimony in seawater by voltammetric and chronopotentiometric stripping using a vibrated gold microwire electrode", Analytica Chimica Acta, 746, 53-62 (2012).
Salaun, P., Planer-Friedrich, B., and van den Berg, C. M., "Inorganic arsenic speciation in water and seawater by anodic stripping voltammetry with a gold microelectrode", Analytica Chimica Acta, 585(2), 312-22 (2007).
Salimi, A., Manikhezri, H., Hallaj, R., and Soltanian, S., "Electrochemical detection of trace amount of arsenic(III) at glassy carbon electrode modified with cobalt oxide nanoparticles", Sensors and Actuators B: Chemical, 129, 246–254 (2008).
Salinas-Torres, D., Huerta, F., Montilla, F., and Morallón, E., "Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes", Electrochimica Acta, 56(5), 2464-2470 (2011).
Sanllorente-Méndez, S., Domínguez-Renedo, O., and Arcos-Martínez, M. J., "Determination of arsenic(III) using platinum nanoparticle-modified screen-printed carbon-based electrodes", Electroanalysis, 21(3-5), 635-639 (2009).
Sanllorente-Méndez, S., Domínguez-Renedo, O., and Arcos-Martínez, M. J., "Immobilization of acetylcholinesterase on screen-printed electrodes. Application to the determination of arsenic(III)", Sensors, 10(3), 2119-2128 (2010).
Sanllorente-Mendez, S., Dominguez-Renedo, O., and Arcos-Martinez, M. J., "Development of acid phosphatase based amperometric biosensors for the inhibitive determination of As(V)", Talanta, 93, 301-6 (2012).
Shakkthivel, P., and Singh, P., "Role of PtO on the oxidation of arsenic (III) at Pt RDE in 1 M H2SO4 and 1 M Na2SO4 through linear sweep voltammetry technique", International Journal of Electrochemical Science, 2, 311-320 (2007).
Shin, S.-H., and Hong, H.-G., "Anodic stripping voltammetric detection of arsenic(III) at platinum-iron(III) nanoparticle modified carbon nanotube on glassy carbon electrode", Bulletin of the Korean Chemical Society, 31(11), 3077-3083 (2010).
Simm, A. O., Banks, C. E., and Compton, R. G., "The electrochemical detection of arsenic(III) at a silver electrode", Electroanalysis, 17(19), 1727-1733 (2005a).
Simm, A. O., Banks, C. E., and Compton, R. G., "Sonoelectroanalytical detection of ultra-trace arsenic", Electroanalysis, 17(4), 335-342 (2005b).
Smedley, P. L., and Kinniburgh, D. G., "A review of the source, behaviour and distribution of arsenic in natural waters", Applied Geochemistry, 17, 517–568 (2002).
Song, Y., and Swain, G. M., "Total inorganic arsenic detection in real water samples using anodic stripping voltammetry and a gold-coated diamond thin-film electrode", Analytica Chimica Acta, 593(1), 7-12 (2007).
Sun, D., Xie, X., Cai, Y., Zhang, H., and Wu, K., "Voltammetric determination of Cd2+ based on the bifunctionality of single-walled carbon nanotubes-nafion film", Analytica Chimica Acta, 581(1), 27-31 (2007).
Teixeira, M. C., Tavares Ede, F., Saczk, A. A., Okumura, L. L., Cardoso, M., Magriotis, Z. M., and de Oliveira, M. F., "Cathodic stripping voltammetric determination of arsenic in sugarcane brandy at a modified carbon nanotube paste electrode", Food Chemistry, 154, 38-43 (2014).
Thomas, D. J., Styblo, M., and Lin, S., "The cellular metabolism and systemic toxicity of arsenic", Toxicology and Applied Pharmacology, 176(2), 127-44 (2001).
Vairavapandian, D., Vichchulada, P., and Lay, M. D., "Preparation and modification of carbon nanotubes: review of recent advances and applications in catalysis and sensing", Analytica Chimica Acta, 626(2), 119-29 (2008).
Vedhi, C., Selvanathan, G., Arumugam, P., and Manisankar, P., "Electrochemical sensors of heavy metals using novel polymer-modified glassy carbon electrodes", Ionics, 15(3), 377-383 (2008).
Wang, D., Zhao, Y., Jin, H., Zhuang, J., Zhang, W., Wang, S., and Wang, J., "Synthesis of Au-decorated tripod-shaped Te hybrids for applications in the ultrasensitive detection of arsenic", ACS Applied Materials & Interfaces, 5(12), 5733-40 (2013).
Wang, J., Li, M., Shi, Z., Li, N., and Gu, Z., "Electrocatalytic oxidation of norepinephrine at a glassy carbon electrode modified with single wall carbon nanotubes", Electroanalysis, 14(3), 225-230 (2002a).
Wang, J., Li, M., Shi, Z., Li, N., and Z., G., "Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes", Analytical Chemistry, 74, 1993-1997 (2002b).
Wang, J. J., Yin, G. P., Zhang, J., Wang, Z. B., and Gao, Y. Z., "High utilization platinum deposition on single-walled carbon nanotubes as catalysts for direct methanol fuel cell", Electrochimica Acta, 52(24), 7042-7050 (2007).
Wang, Y., Du, G., Zhu, L., Liu, H., Wong, C.-P., and Wang, J., "Aligned open-ended carbon nanotube membranes for direct electrochemistry applications", Sensors and Actuators B: Chemical, 174, 570-576 (2012).
Wildgoose, G. G., Banks, C. E., and Compton, R. G., "Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications", Small, 2(2), 182-93 (2006).
Wu, K., Fei, J., and Hu, S., "Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes", Analytical Biochemistry, 318(1), 100-106 (2003a).
Wu, K., Hu, S., Fei, J., and Bai, W., "Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes", Analytica Chimica Acta, 489(2), 215-221 (2003b).
Xiao, L., Wildgoose, G. G., and Compton, R. G., "Sensitive electrochemical detection of arsenic (III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry", Analytica Chimica Acta, 620(1-2), 44-9 (2008).
Xie, X., Mai, Y., and Zhou, X., "Dispersion and alignment of carbon nanotubes in polymer matrix: A review", Materials Science and Engineering: R: Reports, 49(4), 89-112 (2005).
Xu, H., Allard, B., and Grimvall, A., "Effects of acidification and natural organic materials on the mobility of arsenic in the environment", Water Air and Soil Poll, 57-58, 269-278 (1991).
Xu, H., Zeng, L., Xing, S., Xian, Y., and Jin, L., "Microwave-irradiated synthesized platinum nanoparticles/carbon nanotubes for oxidative determination of trace arsenic(III)", Electrochemistry Communications, 10(4), 551-554 (2008).
Yanez, J., Fierro, V., Mansilla, H., Figueroa, L., Cornejo, L., and Barnes, R. M., "Arsenic speciation in human hair: a new perspective for epidemiological assessment in chronic arsenicism", Journal of Environmental Monitoring, 7(12), 1335-41 (2005).
Yang, C., Sang, Q., Zhang, S., and Huang, W., "Voltammetric determination of estrone based on the enhancement effect of surfactant and a MWNT film electrode", Materials Science and Engineering: C, 29(5), 1741-1745 (2009).
Yilmaz, S., Baba, B., Baba, A., Yagmur, S., and Citak, M., "Direct quantitative determination of total arsenic in natural hotwaters by anodic stripping voltammetry at the rotating lateral gold electrode", Current Analytical Chemistry, 5, 29-34 (2009).
Yuan, S., He, Q., Yao, S., and Hu, S., "Mercury‐free detection of europium (III) at a glassy carbon electrode modified with carbon nanotubes by adsorptive stripping voltammetry", Analytical Letters, 39(2), 373-385 (2006).
Yuge, R., Toyama, K., Ichihashi, T., Ohkawa, T., Aoki, Y., and Manako, T., "Characterization and field emission properties of multi-walled carbon nanotubes with fine crystallinity prepared by CO2 laser ablation", Applied Surface Science, 258(18), 6958-6962 (2012).
Yusof, N. A., Daud, N., Tee, T. W., and Abdullah, A. H., "Electrocatalytic characteristic of carbon nanotubes/glutamine/nafion modified platinum electrode in development of sensor for determination of As(III)", International Journal of Electrochemical Science, 2385 - 2397 (2011).
Zakharova, E. A., Noskova, G. N., Kabakaev, A. S., V., R. N., and Compton, R. G., "Gold microelectrode ensembles: cheap, reusable and stable electrodes for the determination of arsenic (V) under aerobic conditions", Environmental Analytical Chemistry, 93(11), 1105-1115 (2013).
Zen, J.-M., Kumar, A.-S., and Tsai, D.-M., "Recent updates of chemically modified electrodes in analytical chemistry", Electroanalysis, 15(13), 1073-1087 (2003).
Zhang, N., Fu, N., Fang, Z., Feng, Y., and Ke, L., "Simultaneous multi-channel hydride generation atomic fluorescence spectrometry determination of arsenic, bismuth, tellurium and selenium in tea leaves", Food Chemistry, 124(3), 1185-1188 (2011).
Zlatev, R., Stoytcheva, M., and Valdez, B., "As(III) determination in the presence of Pb(II) by differential alternative pulses voltammetry", Electroanalysis, 22(15), 1671-1674 (2010).
胡啟章,「電化學原理與方法」,五南圖書出版社,2011
鄭人豪,「白金奈米顆粒修飾玻璃碳電極及其應用於葡萄糖生醫感測器之研究」,碩士論文,南台科技大學化學工程研究所,台南,2004
歐陽姍佩,「鹼性溶液中鎳大環錯鹽聚合膜修飾電極對甲醇及苯甲醇之氧化電觸行為研究」,碩士論文,國立台南師範學院自然科學教育學系,台南,2004
陳成裕、曾志明、石東生,「尿中TTCA電化學偵測技術研究」,行政院勞工委員會勞工安全衛生研究所,台北,2002
林良憲,「利用奈米碳管與電化學預處理修飾網版印刷碳電極選擇性偵測尿酸之研究」,碩士論文,國立中山大學化學研究所,高雄,2010
黃喬渝,「單壁奈米碳管修飾電極對硝基酚和銅之電化學分析」,碩士論文,國立中央大學環境工程研究所,中壢,2012
格里第、鲜祺振,「電極動力學」,財團法人徐氏基金會,1996
王凱平,「奈米孔洞碳電極之孔洞結構與電化學電容之相關性研究」,碩士論文,國立成功大學化學工程學系碩士班,台南,2005
周允文,「利用表面修飾自組裝合金/奈米複合碳材料與其電化學特性研究」,碩士論文,元智大學化學工程與材料科學學系,中壢,2007
郭豔如,「可拋棄式奈米白金碳墨修飾電極電化學偵測之研究」,碩士論文,國立交通大學應用化學系,新竹,2009
王丕承,「奈米碳管科技研發趨勢分析」,財團法人國家實驗研究院科技政策研究與資訊中心編印,2008
秦靜如、盧怡君、張雅雯、黃韻寧、莊惠婷「運用奈米碳管修飾電極進行水質分析」,國立中央大學環境工程研究所,桃園,2014
曾俊豪,「利用新穎電漿技術改質奈米碳管以製備導電複合材料之研究」,博士論文,國立成功大學化學工程學系,臺南,2009
成會明,「奈米碳管」,五南圖書出版社,2004
洪昭南、徐逸明、王宏達,「奈米碳管結構及特性簡介」,化工,第49卷,第23至30頁,2002
杜玉琴,「鄰苯二甲酸酯類和腐植酸在多壁奈米碳管上的吸附」,碩士論文,國立中央大學環境工程研究所,中壢,2011
周貝倫,「純化程序對奈米碳管表面特性影響之研究」,碩士論文,國立中央大學環境工程研究所,中壢,2006
馬振基,「奈米材料科技原理與應用」,全華科技圖書股份有限公司,2005
趙蓓瑩,「具乙烷官能基和硫醇官能基之中孔洞材料的合成、鑑定與應用」,碩士論文,國立中央大學化學學系,中壢,2011
Cheap Tube Inc. "http://www.cheaptubes.com/"
指導教授 秦靜如(Ching-Ju Monica Chin) 審核日期 2015-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明