博碩士論文 102326002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.222.121.170
姓名 徐志昆(Chih-Kun Hsu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 掩埋場滲出水環境之汞甲基化潛勢探討
(Investigation of mercury methylation potential in the landfill leachate environment)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 汞雖是具有神經毒性的微量元素,但因其獨有的物化特性,至今仍常用於某些工業、家用、醫療品項,以及消費性的電子產品。這些含汞的物件在廢棄後,最終將會不可避免地流入垃圾掩埋場中,特別是在垃圾分類及資源回收較不積極實施或推廣的地區。掩埋場中的汞由於可能因滲出水浸出以及揮發作用恐存在著衝擊周圍生態系統的污染潛勢問題,但過往的研究多僅著重於氣相汞的逸散調查,對於滲出水的汞流出以及隨後的環境污染問題則甚少著墨。然而,相較於其他地下環境,掩埋場所具有的高鹽度、高有機質濃度、顯著氧化還原狀態的改變 (即好氧、脫硝、硫酸鹽還原、鐵還原以及甲烷化彼此間的轉換) 等特性都將可能廣泛且深遠地影響汞在此系統內的化學組成、轉化作用以及移動潛力,尤其當操控生物性汞甲基化的基因組在經半世紀的努力後終於近期被鑑定出來,並藉此進一步地指出可現地生成甲基汞的厭氧微生物也包括常見的發酵菌與甲烷生成菌後,更加凸顯這類過往被忽略的地下場址需重新檢視其內汞物種的生地化轉換與流佈機制。有鑑於此,本研究先選定台灣北部三座鄰近的垃圾掩埋場作為研究場址,採樣分析其滲出水中與汞甲基化作用相關之生地化參數,藉以釐清掩埋場中汞的傳輸、宿命與污染潛勢。初步的調查結果如同預期,所選定之掩埋場因已停埋多年 (掩埋齡逾20年),總汞的濃度僅約69 – 246 pM,且COD與TOC分別低於1,000 mg/L與200 mg/L,暗示著這些場址已達第三期末或第四期之掩埋成熟度。然而,所測得的DO與ORP則分別低於0.2 mg/L與介於20 – 200 mV,代表掩埋場滲出水仍為厭氧狀態 (貼近鐵還原狀態),因此本研究進一步以滲出水為介質,並額外添加無機汞與甲基汞,以及汞甲基化純菌進行縮模實驗,用以模擬滲出水受汞污染時,汞的生物可利用性、(生物性與非生物性的) 氧化/還原與甲基化/去甲基化的程度,其結果指出滲出水將汞還原的能力甚低,進一步推估可能存在中性汞錯合物並透過被動擴散攝取至細胞體內生成甲基汞,然而現地環境中汞的生物可利用性仍不高,並於生物性去甲基化迅速的作用下抑制甲基汞累積,滲出水因而不具顯著的汞甲基化潛勢,代表著台灣掩埋場無須過度擔心甲基汞對環境造成的危害風險。然而,不同時期與型態的掩埋場於汞甲基化潛勢皆有所差異,期望本研究之結果可做為往後掩埋場評估之依據,同時對法規、管理層面以及風險評估上的科學佐證皆有所助益。
摘要(英) While mercury (Hg) is a well-known neurotoxic element, it is still being used for or incorporated into certain industrial processes and commercial products as a result of its unique physicochemical properties, which leads to a situation that some of these Hg-bearing solid wastes may eventually be disposed in conventional landfills, especially in places where systematic recycling practices are difficult to implement. The presence of Hg in landfills is a concern due to the potential for it to volatilize or leach from the landfill site and impact local ecosystems. However, earlier studies were merely focused on documenting the emissions of Hg as landfill gas. Little has been undertaken to investigate the possible release of Hg in leachate, as well as the biogeochemical processes that control Hg transformations in landfills. Given that the genomic information derived from a recently identified gene cluster (i.e., hgcAB) encoding for proteins essential for microbial Hg methylation has indicated that the anaerobic conditions in landfills can foster the growth of some fermentative bacteria, syntrophs and methanogens that were previously unrecognized but now are acknowledged as Hg-methylators, it is important to re-examine the speciation and in particular methylation potential of Hg within the landfill environment. Accordingly, in this study three landfills designated as A, B and C in northern Taiwan were chosen as the research sites to obtain leachate samples. Specific emphases were placed on characterization of geochemical conditions and determination of Hg bioavailability and transformations including reduction, methylation and demethylation in these settings. Preliminary results show that, as expected, concentrations of total Hg measured in the leachate samples (69-246 pM) lie within the range reported for the background environmental Hg level, presumably due to both the thorough and consistent implementation of recycle/reuse policy in Taiwan and a prolonged period of landfill termination. Levels of analyzed geochemical parameters such as 1000 mg/L COD, 200 mg/L TOC, 0.2 mg/L DO, as well as 20 – 200 mV ORP also support the observation that the landfill maturation of the study sties has reached at or beyond the stage of Phase IV. Further, microcosm experiments conducted with spike of inorganic Hg(II), methylmercury and Geobacter sulfurreducens PGA (i.e., a model Hg-methylating bacterium) into leachates in the presence or absence of bacterial growth inhibitors reveal that at this stage, the potential for in situ Hg methylation seems to be limited owing to poor bioavailability of inorganic Hg and vigorous biotic demethylation of organomercury. Together, not only can these results be used as the baseline data for future comparisons, but they also indicate that the impact of Hg contamination from the three studied landfill sites on the surrounding environment is likely trivial. Nonetheless, considering the fact that the chemical and microbiological conditions vary in different phases of the landfill maturation process, future study on the relative importance of these conditions in governing mercury transformations in prior phases, particularly Phases II & III, is warranted.
關鍵字(中) ★ 掩埋場
★ 甲基汞
★ 生物可利用性
★ 生物地質化學
★ 生態衝擊
關鍵字(英) ★ landfills
★ methylmercury
★ bioavailability
★ biogeochemistry
★ ecological impact
論文目次 摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 前言 1
1.1. 研究背景 1
1.2. 研究目的 4
第二章 文獻回顧 5
2.1. 全球性汞宿命與傳輸 5
2.1.1. 商業性汞產品 8
2.1.2. 汞於人體的危害與相關策略 8
2.2. 汞流入掩埋場後的環境議題 10
2.3. 掩埋場生命週期與物種轉化 12
2.4. 掩埋場內汞的可能物種轉化機制 14
2.4.1. 非生物性汞氧化還原 14
2.4.2. 生物性汞氧化還原 16
2.4.3. 汞甲基化 17
2.4.4. 汞去甲基化 19
第三章 實驗方法 20
3.1. 實驗架構 20
3.2. 研究場址介紹 20
3.3. 厭氧技術 21
3.4. 滲出水地質化學參數分析 24
3.5. 滲出水分子生物分析 26
3.6. 滲出水縮模實驗 27
3.7. 滲出水總汞分析 31
3.8. 滲出水甲基汞分析 33
第四章 結果與討論 35
4.1. 滲出水地化參數 35
4.2. 滲出水汞物種分佈 41
4.3. 滲出水分子生物鑑定 47
4.4. 厭氧滲出水環境汞甲基化潛勢 53
4.4.1. 掩埋場於Phase IV甲基汞生成潛勢 57
4.4.2. 生物可利用性受汞物種形態之影響 61
4.4.3. 生物可利用性受現地汞甲基化菌群之影響 64
4.4.4. 去甲基化潛勢 73
4.5. 掩埋場汞甲基化潛勢評估 76
第五章 結論與建議 80
5.1. 結論 80
5.2. 建議 81
參考文獻 83
參考文獻 1. Abd El-Salam, M. M., and I. A.-Z. G, “Impact of landfill leachate on the groundwater quality: A case study in Egypt”, J Adv Res, vol. 6, pp. 579-586, (2015).
2. Al-Yaqout, A. F., and M. F. Hamoda, “Evaluation of landfill leachate in arid climate—a case study”, Environment International, vol. 29, pp. 593-600, (2003).
3. Alberts, J. J., J. E. Schindler, R. W. Miller, and D. E. Nutter, Jr., “Elemental mercury evolution mediated by humic Acid”, Science, vol. 184, pp. 895-897, (1974).
4. Allard, B., and I. Arsenie, “Abiotic reduction of mercury by humic substances in aquatic system — an important process for the mercury cycle”, Water Air & Soil Pollution, vol. 56, pp. 457-464, (1991).
5. Amos, H. M., D. J. Jacob, D. G. Streets, and E. M. Sunderland, “Legacy impacts of all-time anthropogenic emissions on the global mercury cycle”, Global Biogeochemical Cycles, vol. 27, pp. 410-421, (2013).
6. Amyot, M., D. J. McQueen, G. Mierle, and D. R. Lean, “Sunlight-induced formation of dissolved gaseous mercury in lake waters”, Environ Sci Technol, vol. 28, pp. 2366-2371, (1994).
7. Andersson, M. E., K. Gardfeldt, I. Wangberg, and D. Stromberg, “Determination of Henry′s law constant for elemental mercury”, Chemosphere, vol. 73, pp. 587-592, (2008).
8. Bae, H. S., F. E. Dierberg, and A. Ogram, “Syntrophs dominate sequences associated with the mercury methylation-related gene hgcA in the water conservation areas of the Florida Everglades”, Appl Environ Microbiol, vol. 80, pp. 6517-6526, (2014).
9. Barkay, T., K. Kritee, E. Boyd, and G. Geesey, “A thermophilic bacterial origin and subsequent constraints by redox, light and salinity on the evolution of the microbial mercuric reductase”, Environ Microbiol, vol. 12, pp. 2904-2917, (2010).
10. Barkay, T., S. M. Miller, and A. O. Summers, “Bacterial mercury resistance from atoms to ecosystems”, FEMS Microbiol Rev, vol. 27, pp. 355-384, (2003).
11. Barkay, T., R. R. Turner, L. D. Rasmussen, C. A. Kelly, and J. W. Rudd, “Luminescence facilitated detection of bioavailable mercury in natural waters”, Methods Mol Biol, vol. 102, pp. 231-246, (1998).
12. Barkay, T., and I. Wagner‐Döbler, “Microbial Transformations of Mercury: Potentials, Challenges, and Achievements in Controlling Mercury Toxicity in the Environment”, vol. 57, pp. 1-52, (2005).
13. Barlaz, M., R. Ham, D. Schaefer, and R. Isaacson, “Methane production from municipal refuse: A review of enhancement techniques and microbial dynamics”, Critical Reviews in Environmental Science and Technology, vol. 19, pp. 557-584, (1990).
14. Barlaz, M. A., D. M. Schaefer, and R. K. Ham, “Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill”, Appl Environ Microbiol, vol. 55, pp. 55-65, (1989).
15. Barringer, J. L., and Z. Szabo, “Overview of investigations into mercury in ground water, soils, and septage, new jersey coastal plain”, Water, Air, and Soil Pollution, vol. 175, pp. 193-221, (2006).
16. Benoit, J., C. Gilmour, A. Heyes, R. Mason, and C. Miller, 2003, Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems, ACS symposium series, p. 262-297.
17. Benoit, J. M., C. C. Gilmour, A. Heyes, R. P. Mason, and C. L. Miller, “Geochemical and Biological Controls over Methylmercury Production and Degradation in Aquatic Ecosystems”, vol. 835, pp. 262-297, (2002).
18. Benoit, J. M., C. C. Gilmour, and R. P. Mason, “The Influence of Sulfide on Solid-Phase Mercury Bioavailability for Methylation by Pure Cultures ofDesulfobulbus propionicus(1pr3)”, Environmental Science & Technology, vol. 35, pp. 127-132, (2001).
19. Blum, J. D., B. N. Popp, J. C. Drazen, C. Anela Choy, and M. W. Johnson, “Methylmercury production below the mixed layer in the North Pacific Ocean”, Nature Geoscience, vol. 6, pp. 879-884, (2013).
20. Brazeau, M. L., J. M. Blais, A. M. Paterson, W. Keller, and A. J. Poulain, “Evidence for microbially mediated production of elemental mercury (Hg0) in subarctic lake sediments”, Applied Geochemistry, vol. 37, pp. 142-148, (2013).
21. Bridou, R., M. Monperrus, P. R. Gonzalez, R. Guyoneaud, and D. Amouroux, “Simultaneous determination of mercury methylation and demethylation capacities of various sulfate-reducing bacteria using species-specific isotopic tracers”, Environ Toxicol Chem, vol. 30, pp. 337-344, (2011).
22. Celo, V., D. R. Lean, and S. L. Scott, “Abiotic methylation of mercury in the aquatic environment”, Sci Total Environ, vol. 368, pp. 126-137, (2006).
23. Chan, H. M., and O. Receveur, “Mercury in the traditional diet of indigenous peoples in Canada”, Environmental Pollution, vol. 110, pp. 1-2, (2000).
24. Charlet, L., D. Bosbach, and T. Peretyashko, “Natural attenuation of TCE, As, Hg linked to the heterogeneous oxidation of Fe(II): an AFM study”, Chemical Geology, vol. 190, pp. 303-319, (2002).
25. Cheng, H., and Y. Hu, “Mercury in municipal solid waste in China and its control: a review”, Environ Sci Technol, vol. 46, pp. 593-605, (2012).
26. Christensen, T. H., and P. Kjeldsen, 1995, Landfill emissions and environmental impact: An introduction, Proceedings of Sardinia 95-Fifth International Landfill Symposium.
27. Christensen, T. H., P. Kjeldsen, P. L. Bjerg, D. L. Jensen, J. B. Christensen, A. Baun, H.-J. Albrechtsen, and G. Heron, “Biogeochemistry of landfill leachate plumes”, Applied Geochemistry, vol. 16, pp. 659-718, (2001).
28. Clarkson, T. W., “Human toxicology of Mercury”, The Journal of Trace Elements in Experimental Medicine, vol. 11, pp. 303-317, (1998).
29. Compeau, G. C., and R. Bartha, “Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment”, Appl Environ Microbiol, vol. 50, pp. 498-502, (1985).
30. DeLaune, R., and K. Reddy, “Redox potential”, Encyclopedia of Soils in the Environment, vol. 3, pp. 366-371, (2005).
31. Demers, J. D., C. T. Driscoll, T. J. Fahey, and J. B. Yavitt, “Mercury Cycling in Litter and Soil in Different Forest Types in the Adirondack Region, New York, USA”, Ecological Applications, vol. 17, pp. 1341-1351, (2007).
32. Desrosiers, M., D. Planas, and A. Mucci, “Mercury Methylation in the Epilithon of Boreal Shield Aquatic Ecosystems”, Environmental Science & Technology, vol. 40, pp. 1540-1546, (2006).
33. Driscoll, C. T., Y.-J. Han, C. Y. Chen, D. C. Evers, K. F. Lambert, T. M. Holsen, N. C. Kamman, and R. K. Munson, “Mercury Contamination in Forest and Freshwater Ecosystems in the Northeastern United States”, BioScience, vol. 57, p. 17, (2007).
34. Driscoll, C. T., R. P. Mason, H. M. Chan, D. J. Jacob, and N. Pirrone, “Mercury as a global pollutant: sources, pathways, and effects”, Environ Sci Technol, vol. 47, pp. 4967-4983, (2013).
35. Ehrig, H. J., “Water and element balances of landfills”, vol. 20, pp. 83-115, (1989).
36. Fan, H. J., H. Y. Shu, H. S. Yang, and W. C. Chen, “Characteristics of landfill leachates in central Taiwan”, Sci Total Environ, vol. 361, pp. 25-37, (2006).
37. Farombi, E. O., J. K. Akintunde, N. Nzute, I. A. Adedara, and O. Arojojoye, “Municipal landfill leachate induces hepatotoxicity and oxidative stress in rats”, Toxicol Ind Health, vol. 28, pp. 532-541, (2012).
38. Feldmann, J., and A. V. Hirner, “Occurrence of Volatile Metal and Metalloid Species in Landfill and Sewage Gases”, International Journal of Environmental Analytical Chemistry, vol. 60, pp. 339-359, (1995).
39. Feng, X., “Landfill is an important at-mospheric mercury emission source”, Chinese Science Bulletin, vol. 49, p. 2068, (2004).
40. Feng, X., P. Li, G. Qiu, S. Wang, G. Li, L. Shang, B. Meng, H. Jiang, W. Bai, Z. Li, and X. Fu, “Human Exposure To Methylmercury through Rice Intake in Mercury Mining Areas, Guizhou Province, China”, Environmental Science & Technology, vol. 42, pp. 326-332, (2008).
41. Fleming, E. J., E. E. Mack, P. G. Green, and D. C. Nelson, “Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium”, Appl Environ Microbiol, vol. 72, pp. 457-464, (2006).
42. Gilmour, C., D. Krabbenhoft, W. Orem, G. Aiken, and E. Roden, “Appendix 3B-2: status report on ACME studies on the control of mercury methylation and bioaccumulation in the Everglades”, 2007 South Florida Environmental Report, vol. 1, pp. 3B-2, (2007).
43. Gilmour, C. C., D. A. Elias, A. M. Kucken, S. D. Brown, A. V. Palumbo, C. W. Schadt, and J. D. Wall, “Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation”, Appl Environ Microbiol, vol. 77, pp. 3938-3951, (2011).
44. Gilmour, C. C., E. A. Henry, and R. Mitchell, “Sulfate stimulation of mercury methylation in freshwater sediments”, Environmental Science & Technology, vol. 26, pp. 2281-2287, (1992).
45. Gilmour, C. C., M. Podar, A. L. Bullock, A. M. Graham, S. D. Brown, A. C. Somenahally, A. Johs, R. A. Hurt, Jr., K. L. Bailey, and D. A. Elias, “Mercury methylation by novel microorganisms from new environments”, Environ Sci Technol, vol. 47, pp. 11810-11820, (2013).
46. Grieb, T. M., G. L. Bowie, C. T. Driscoll, S. P. Gloss, C. L. Schofield, and D. B. Porcella, “Factors affecting mercury accumulation in fish in the upper michigan peninsula”, Environmental Toxicology and Chemistry, vol. 9, pp. 919-930, (1990).
47. Gu, B., Y. Bian, C. L. Miller, W. Dong, X. Jiang, and L. Liang, “Mercury reduction and complexation by natural organic matter in anoxic environments”, Proc Natl Acad Sci U S A, vol. 108, pp. 1479-1483, (2011).
48. Hamelin, S., M. Amyot, T. Barkay, Y. Wang, and D. Planas, “Methanogens: principal methylators of mercury in lake periphyton”, Environ Sci Technol, vol. 45, pp. 7693-7700, (2011).
49. Harmsen, J., “Identification of organic compounds in leachate from a waste tip”, Water Research, vol. 17, pp. 699-705, (1983).
50. Hirner, A. V., J. r. Feldmann, R. Goguel, S. Rapsomanikis, R. Fischer, and M. O. Andreae, “Volatile metal and metalloid species in gases from municipal waste deposits”, Applied Organometallic Chemistry, vol. 8, pp. 65-69, (1994).
51. Holmes, C. D., D. J. Jacob, E. S. Corbitt, J. Mao, X. Yang, R. Talbot, and F. Slemr, “Global atmospheric model for mercury including oxidation by bromine atoms”, Atmospheric Chemistry and Physics, vol. 10, pp. 12037-12057, (2010).
52. Horowitz, H. M., D. J. Jacob, H. M. Amos, D. G. Streets, and E. M. Sunderland, “Historical Mercury releases from commercial products: global environmental implications”, Environ Sci Technol, vol. 48, pp. 10242-10250, (2014).
53. Hower, J. C., C. L. Senior, E. M. Suuberg, R. H. Hurt, J. L. Wilcox, and E. S. Olson, “Mercury capture by native fly ash carbons in coal-fired power plants”, Prog Energy Combust Sci, vol. 36, (2010).
54. Hu, H., H. Lin, W. Zheng, S. J. Tomanicek, A. Johs, X. Feng, D. A. Elias, L. Liang, and B. Gu, “Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria”, Nature Geoscience, vol. 6, pp. 751-754, (2013).
55. Imura, N., E. Sukegawa, S. K. Pan, K. Nagao, J. Y. Kim, T. Kwan, and T. Ukita, “Chemical Methylation of Inorganic Mercury with Methylcobalaiin, a Vitamin B12 Analog”, Science, vol. 172, pp. 1248-1249, (1971).
56. Jensen, S., and A. JernelÖV, “Biological Methylation of Mercury in Aquatic Organisms”, Nature, vol. 223, pp. 753-754, (1969).
57. Jiménez-Moreno, M., V. Perrot, V. N. Epov, M. Monperrus, and D. Amouroux, “Chemical kinetic isotope fractionation of mercury during abiotic methylation of Hg(II) by methylcobalamin in aqueous chloride media”, Chemical Geology, vol. 336, pp. 26-36, (2013).
58. Karagas, M. R., A. L. Choi, E. Oken, M. Horvat, R. Schoeny, E. Kamai, W. Cowell, P. Grandjean, and S. Korrick, “Evidence on the human health effects of low-level methylmercury exposure”, Environ Health Perspect, vol. 120, pp. 799-806, (2012).
59. Kerin, E. J., C. C. Gilmour, E. Roden, M. T. Suzuki, J. D. Coates, and R. P. Mason, “Mercury methylation by dissimilatory iron-reducing bacteria”, Appl Environ Microbiol, vol. 72, pp. 7919-7921, (2006).
60. Kjeldsen, P., M. A. Barlaz, A. P. Rooker, A. Baun, A. Ledin, and T. H. Christensen, “Present and Long-Term Composition of MSW Landfill Leachate: A Review”, Critical Reviews in Environmental Science and Technology, vol. 32, pp. 297-336, (2002).
61. Krabbenhoft, D. P., and E. M. Sunderland, “Environmental science. Global change and mercury”, Science, vol. 341, pp. 1457-1458, (2013).
62. Laloui-Carpentier, W., T. Li, V. Vigneron, L. Mazeas, and T. Bouchez, “Methanogenic diversity and activity in municipal solid waste landfill leachates”, Antonie Van Leeuwenhoek, vol. 89, pp. 423-434, (2006).
63. Lane, D., “16S/23S rRNA sequencing”, Nucleic acid techniques in bacterial systematics, pp. 125-175, (1991).
64. Lee, S. W., G. V. Lowry, and H. Hsu-Kim, “Biogeochemical transformations of mercury in solid waste landfills and pathways for release”, Environ Sci Process Impacts, vol. 18, pp. 176-189, (2016).
65. Lehnherr, I., and V. L. St. Louis, “Importance of Ultraviolet Radiation in the Photodemethylation of Methylmercury in Freshwater Ecosystems”, Environmental Science & Technology, vol. 43, pp. 5692-5698, (2009).
66. Li, Z. G., X. Feng, P. Li, L. Liang, S. L. Tang, S. F. Wang, X. W. Fu, G. L. Qiu, and L. H. Shang, “Emissions of air-borne mercury from five municipal solid waste landfills in Guiyang and Wuhan, China”, Atmospheric Chemistry and Physics, vol. 10, pp. 3353-3364, (2010).
67. Li, Z. G., X. B. Feng, and P. Li, “Fate of Mercury in a Modern Municipal Solid Waste Landfill in China”, Advanced Materials Research, vol. 518-523, pp. 3371-3374, (2012).
68. Lin, C. C., N. Yee, and T. Barkay, “Microbial transformations in the mercury cycle”, Environmental chemistry and toxicology of mercury, pp. 155-191, (2012).
69. Lin, H., X. Lu, L. Liang, and B. Gu, “Cysteine Inhibits Mercury Methylation byGeobacter sulfurreducensPCA Mutant ΔomcBESTZ”, Environmental Science & Technology Letters, vol. 2, pp. 144-148, (2015).
70. Lindberg, S., R. Bullock, R. Ebinghaus, D. Engstrom, X. Feng, W. Fitzgerald, N. Pirrone, E. Prestbo, and C. Seigneur, “A Synthesis of Progress and Uncertainties in Attributing the Sources of Mercury in Deposition”, AMBIO: A Journal of the Human Environment, vol. 36, pp. 19-33, (2007).
71. Lindberg, S. E., S. Brooks, C. J. Lin, K. J. Scott, M. S. Landis, R. K. Stevens, M. Goodsite, and A. Richter, “Dynamic Oxidation of Gaseous Mercury in the Arctic Troposphere at Polar Sunrise”, Environmental Science & Technology, vol. 36, pp. 1245-1256, (2002).
72. Lindberg, S. E., G. Southworth, E. M. Prestbo, D. Wallschläger, M. A. Bogle, and J. Price, “Gaseous methyl- and inorganic mercury in landfill gas from landfills in Florida, Minnesota, Delaware, and California”, Atmospheric Environment, vol. 39, pp. 249-258, (2005a).
73. Lindberg, S. E., G. R. Southworth, M. A. Bogle, T. J. Blasing, J. Owens, K. Roy, H. Zhang, T. Kuiken, J. Price, D. Reinhart, and H. Sfeir, “Airborne Emissions of Mercury from Municipal Solid Waste. I: New Measurements from Six Operating Landfills in Florida”, Journal of the Air & Waste Management Association, vol. 55, pp. 859-869, (2005b).
74. Lindberg, S. E., D. Wallschläger, E. M. Prestbo, N. S. Bloom, J. Price, and D. Reinhart, “Methylated mercury species in municipal waste landfill gas sampled in Florida, USA11Research sponsored by the Florida Department of Environmental Protection, Waste Management Division under contract with ORNL. ORNL is managed by UT-Battelle for the US Department of Energy”, Atmospheric Environment, vol. 35, pp. 4011-4015, (2001).
75. Liu, Y. R., R. Q. Yu, Y. M. Zheng, and J. Z. He, “Analysis of the microbial community structure by monitoring an Hg methylation gene (hgcA) in paddy soils along an Hg gradient”, Appl Environ Microbiol, vol. 80, pp. 2874-2879, (2014).
76. Lovley, D. R., J. D. Coates, E. L. Blunt-Harris, E. J. P. Phillips, and J. C. Woodward, “Humic substances as electron acceptors for microbial respiration”, Nature, vol. 382, pp. 445-448, (1996).
77. Lovley, D. R., J. F. Stolz, G. L. Nord, and E. J. Phillips, “Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism”, Nature, vol. 330, pp. 252-254, (1987).
78. Lu, X., Y. Liu, A. Johs, L. Zhao, T. Wang, Z. Yang, H. Lin, D. A. Elias, E. M. Pierce, L. Liang, T. Barkay, and B. Gu, “Anaerobic Mercury Methylation and Demethylation by Geobacter bemidjiensis Bem”, Environ Sci Technol, vol. 50, pp. 4366-4373, (2016).
79. Lu, Z., Z. He, V. A. Parisi, S. Kang, Y. Deng, J. D. Van Nostrand, J. R. Masoner, I. M. Cozzarelli, J. M. Suflita, and J. Zhou, “GeoChip-based analysis of microbial functional gene diversity in a landfill leachate-contaminated aquifer”, Environ Sci Technol, vol. 46, pp. 5824-5833, (2012).
80. Luton, P. E., J. M. Wayne, R. J. Sharp, and P. W. Riley, “The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill”, Microbiology, vol. 148, pp. 3521-3530, (2002).
81. Mahaffey, K. R., E. M. Sunderland, H. M. Chan, A. L. Choi, P. Grandjean, K. Marien, E. Oken, M. Sakamoto, R. Schoeny, P. Weihe, C. H. Yan, and A. Yasutake, “Balancing the benefits of n-3 polyunsaturated fatty acids and the risks of methylmercury exposure from fish consumption”, Nutr Rev, vol. 69, pp. 493-508, (2011).
82. Manning, D. A. C., “Carbonates and oxalates in sediments and landfill: monitors of death and decay in natural and artificial systems”, Journal of the Geological Society, vol. 157, pp. 229-238, (2000).
83. Marvin-DiPasquale, M. C., and R. S. Oremland, “Bacterial Methylmercury Degradation in Florida Everglades Peat Sediment”, Environmental Science & Technology, vol. 32, pp. 2556-2563, (1998).
84. Mason, R. P., A. L. Choi, W. F. Fitzgerald, C. R. Hammerschmidt, C. H. Lamborg, A. L. Soerensen, and E. M. Sunderland, “Mercury biogeochemical cycling in the ocean and policy implications”, Environ Res, vol. 119, pp. 101-117, (2012).
85. Meng, B., X. Feng, G. Qiu, P. Liang, P. Li, C. Chen, and L. Shang, “The process of methylmercury accumulation in rice (Oryza sativa L.)”, Environ Sci Technol, vol. 45, pp. 2711-2717, (2011).
86. Munthe, J., R. A. Bodaly, B. A. Branfireun, C. T. Driscoll, C. C. Gilmour, R. Harris, M. Horvat, M. Lucotte, and O. Malm, “Recovery of Mercury-Contaminated Fisheries”, AMBIO: A Journal of the Human Environment, vol. 36, pp. 33-44, (2007).
87. Muyzer, G., and A. J. Stams, “The ecology and biotechnology of sulphate-reducing bacteria”, Nat Rev Microbiol, vol. 6, pp. 441-454, (2008).
88. Nagase, H., Y. Ose, T. Sato, and T. Ishikawa, “Methylation of mercury by humic substances in an aquatic environment”, Science of The Total Environment, vol. 25, pp. 133-142, (1982).
89. Naz, N., H. K. Young, N. Ahmed, and G. M. Gadd, “Cadmium accumulation and DNA homology with metal resistance genes in sulfate-reducing bacteria”, Appl Environ Microbiol, vol. 71, pp. 4610-4618, (2005).
90. Obrist, D., D. W. Johnson, S. E. Lindberg, Y. Luo, O. Hararuk, R. Bracho, J. J. Battles, D. B. Dail, R. L. Edmonds, R. K. Monson, S. V. Ollinger, S. G. Pallardy, K. S. Pregitzer, and D. E. Todd, “Mercury distribution across 14 U.S. Forests. Part I: spatial patterns of concentrations in biomass, litter, and soils”, Environ Sci Technol, vol. 45, pp. 3974-3981, (2011).
91. Oremland, R. S., C. W. Culbertson, and M. R. Winfrey, “Methylmercury decomposition in sediments and bacterial cultures: involvement of methanogens and sulfate reducers in oxidative demethylation”, Appl Environ Microbiol, vol. 57, pp. 130-137, (1991).
92. Parker, J. L., and N. S. Bloom, “Preservation and storage techniques for low-level aqueous mercury speciation”, Sci Total Environ, vol. 337, pp. 253-263, (2005).
93. Parks, J. M., A. Johs, M. Podar, R. Bridou, R. A. Hurt, Jr., S. D. Smith, S. J. Tomanicek, Y. Qian, S. D. Brown, C. C. Brandt, A. V. Palumbo, J. C. Smith, J. D. Wall, D. A. Elias, and L. Liang, “The genetic basis for bacterial mercury methylation”, Science, vol. 339, pp. 1332-1335, (2013).
94. Podar, M., C. C. Gilmour, C. C. Brandt, A. Soren, S. D. Brown, B. R. Crable, A. V. Palumbo, A. C. Somenahally, and D. A. Elias, “Global prevalence and distribution of genes and microorganisms involved in mercury methylation”, Sci Adv, vol. 1, p. e1500675, (2015).
95. Poulain, A. J., and T. Barkay, “Environmental science. Cracking the mercury methylation code”, Science, vol. 339, pp. 1280-1281, (2013).
96. Powell, J. T., P. Jain, J. Smith, T. G. Townsend, and T. M. Tolaymat, “Does Disposing of Construction and Demolition Debris in Unlined Landfills Impact Groundwater Quality? Evidence from 91 Landfill Sites in Florida”, Environ Sci Technol, vol. 49, pp. 9029-9036, (2015).
97. Schaefer, J. K., R. M. Kronberg, F. M. Morel, and U. Skyllberg, “Detection of a key Hg methylation gene, hgcA, in wetland soils”, Environ Microbiol Rep, vol. 6, pp. 441-447, (2014).
98. Schaefer, J. K., and F. M. M. Morel, “High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens”, Nature Geoscience, vol. 2, pp. 123-126, (2009).
99. Schaefer, J. K., S. S. Rocks, W. Zheng, L. Liang, B. Gu, and F. M. Morel, “Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria”, Proc Natl Acad Sci U S A, vol. 108, pp. 8714-8719, (2011).
100. Schaefer, J. K., J. Yagi, J. R. Reinfelder, T. Cardona, K. M. Ellickson, S. Tel-Or, and T. Barkay, “Role of the Bacterial Organomercury Lyase (MerB) in Controlling Methylmercury Accumulation in Mercury-Contaminated Natural Waters”, Environmental Science & Technology, vol. 38, pp. 4304-4311, (2004).
101. Serrano, O., A. Martínez-Cortizas, M. A. Mateo, H. Biester, and R. Bindler, “Millennial scale impact on the marine biogeochemical cycle of mercury from early mining on the Iberian Peninsula”, Global Biogeochemical Cycles, vol. 27, pp. 21-30, (2013).
102. Slemr, F., E. G. Brunke, R. Ebinghaus, and J. Kuss, “Worldwide trend of atmospheric mercury since 1995”, Atmospheric Chemistry and Physics, vol. 11, pp. 4779-4787, (2011).
103. Smith-Downey, N. V., E. M. Sunderland, and D. J. Jacob, “Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model”, Journal of Geophysical Research, vol. 115, (2010).
104. Soerensen, A. L., E. M. Sunderland, C. D. Holmes, D. J. Jacob, R. M. Yantosca, H. Skov, J. H. Christensen, S. A. Strode, and R. P. Mason, “An improved global model for air-sea exchange of mercury: high concentrations over the North Atlantic”, Environ Sci Technol, vol. 44, pp. 8574-8580, (2010).
105. Song, L., Y. Wang, W. Tang, and Y. Lei, “Archaeal community diversity in municipal waste landfill sites”, Appl Microbiol Biotechnol, vol. 99, pp. 6125-6137, (2015).
106. Spangler, W. J., J. L. Spigarelli, J. M. Rose, and H. M. Miller, “Methylmercury: bacterial degradation in lake sediments”, Science, vol. 180, pp. 192-193, (1973).
107. Sprovieri, F., N. Pirrone, R. Ebinghaus, H. Kock, and A. Dommergue, “A review of worldwide atmospheric mercury measurements”, Atmospheric Chemistry and Physics, vol. 10, pp. 8245-8265, (2010).
108. Sprovieri, F., N. Pirrone, I. M. Hedgecock, M. S. Landis, and R. K. Stevens, “Intensive atmospheric mercury measurements at Terra Nova Bay in Antarctica during November and December 2000”, Journal of Geophysical Research: Atmospheres, vol. 107, pp. ACH 20-21-ACH 20-28, (2002).
109. Staley, B. F., and M. A. Barlaz, “Composition of Municipal Solid Waste in the United States and Implications for Carbon Sequestration and Methane Yield”, Journal of Environmental Engineering, vol. 135, pp. 901-909, (2009).
110. Stemberger, R. S., and C. Y. Chen, “Fish tissue metals and zooplankton assemblages of northeastern U.S. lakes”, Canadian Journal of Fisheries and Aquatic Sciences, vol. 55, pp. 339-352, (1998).
111. Streets, D. G., M. K. Devane, Z. Lu, T. C. Bond, E. M. Sunderland, and D. J. Jacob, “All-time releases of mercury to the atmosphere from human activities”, Environ Sci Technol, vol. 45, pp. 10485-10491, (2011).
112. Tuominen, L., T. Kairesalo, and H. Hartikainen, “Comparison of methods for inhibiting bacterial activity in sediment”, Appl Environ Microbiol, vol. 60, pp. 3454-3457, (1994).
113. UNEP, “Sources, Emissions, Releases and Environmental Transport”, UNEP Chemicals Branch, Geneva, Switzerland, p. 42, (2013).
114. Van der Zee, F. P., and F. J. Cervantes, “Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review”, Biotechnol Adv, vol. 27, pp. 256-277, (2009).
115. Wang, Y., E. Boyd, S. Crane, P. Lu-Irving, D. Krabbenhoft, S. King, J. Dighton, G. Geesey, and T. Barkay, “Environmental conditions constrain the distribution and diversity of archaeal merA in Yellowstone National Park, Wyoming, U.S.A”, Microb Ecol, vol. 62, pp. 739-752, (2011).
116. Weber, J. H., “Review of possible paths for abiotic methylation of mercury(II) in the aquatic environment”, Chemosphere, vol. 26, pp. 2063-2077, (1993).
117. Weber, J. H., K. Reisinger, and M. Stoeppler, “Methylation of mercury (II) by fulvic acid”, Environmental Technology Letters, vol. 6, pp. 203-208, (2008).
118. Whalin, L., E.-H. Kim, and R. Mason, “Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters”, Marine Chemistry, vol. 107, pp. 278-294, (2007).
119. WHO, “environmental health criteria 101”, Geneva: World Health Organization, pp. 1-144, (1990).
120. Wiatrowski, H. A., S. Das, R. Kukkadapu, E. S. Ilton, T. Barkay, and N. Yee, “Reduction of Hg(II) to Hg(0) by Magnetite”, Environmental Science & Technology, vol. 43, pp. 5307-5313, (2009).
121. Xi, B. D., X. S. He, Z. M. Wei, Y. H. Jiang, D. Li, H. W. Pan, and H. L. Liu, “The composition and mercury complexation characteristics of dissolved organic matter in landfill leachates with different ages”, Ecotoxicol Environ Saf, vol. 86, pp. 227-232, (2012).
122. Xiaoli, C., L. Guixiang, W. Jun, T. Huanhuan, J. Rong, and Z. Youcai, “Effects of fulvic substances on the distribution and migration of Hg in landfill leachate”, J Environ Monit, vol. 13, pp. 1464-1469, (2011).
123. Yorifuji, T., T. Tsuda, S. Inoue, S. Takao, and M. Harada, “Long-term exposure to methylmercury and psychiatric symptoms in residents of Minamata, Japan”, Environ Int, vol. 37, pp. 907-913, (2011).
124. Zhang, H., X. Feng, T. Larssen, G. Qiu, and R. D. Vogt, “In inland China, rice, rather than fish, is the major pathway for methylmercury exposure”, Environ Health Perspect, vol. 118, pp. 1183-1188, (2010).
125. Zhang, L., L. P. Wright, and P. Blanchard, “A review of current knowledge concerning dry deposition of atmospheric mercury”, Atmospheric Environment, vol. 43, pp. 5853-5864, (2009).
126. Zhang, T., and H. Hsu-Kim, “Photolytic degradation of methylmercury enhanced by binding to natural organic ligands”, Nat Geosci, vol. 3, pp. 473-476, (2010).
127. Zheng, W., L. Liang, and B. Gu, “Mercury reduction and oxidation by reduced natural organic matter in anoxic environments”, Environ Sci Technol, vol. 46, pp. 292-299, (2012).
128. Zheng, W., H. Lin, B. F. Mann, L. Liang, and B. Gu, “Oxidation of dissolved elemental mercury by thiol compounds under anoxic conditions”, Environ Sci Technol, vol. 47, pp. 12827-12834, (2013).
指導教授 林居慶(Chu-Ching Lin) 審核日期 2016-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明