博碩士論文 102326011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:35.153.39.7
姓名 湯蕾(Lei Tang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 固定化微藻去除廢水中氮磷之研究
(Study on the Removal of Nitrogen and Phosphorus in Wastewater by Immobilized Microalgae)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究之目的為探討固定化微藻於廢水處理中之氮磷去除效率,而使用固定化微藻為解決在處理後,不易分離、難以採收Chlorella sp.之問題。本研究主要分為兩部分,分別為合成廢水及實際廢水之批次處理試驗,並以不同操作條件進行實驗。
由合成廢水實驗之結果顯示,當固定化藻類顆粒中之藻類初始濃度為1.0 g/L,並連續注入10 %之二氧化碳氣體進行實驗,可得最佳氨氮去除率70.5 %。並且在實際廢水實驗中,瞭解固定化微藻可於最終放流水及二級處理水中進行作用,並能夠充分攝取廢水中的氮磷,而於A廠最終放流水之實驗,可得極佳之氨氮及磷酸鹽去除率,分別為95 %和99 %。最後,分析藻類中油脂含量,可知利用固定化微藻於廢水處理後,證實其藻類仍具有做為生質柴油原料之潛力。
摘要(英) The purpose of this study was to investigate the nitrogen and phosphorus removal efficiency from wastewater by immobilized microalgae, which mainly used to overcome the problems of collecting and separating Chlorella sp. after wastewater treatment. The experiments were carried out with synthetic as well as real wastewater in batch modes under different operation parameters.
The results of synthetic wastewater tests indicated that the maximum 70.5% of ammonia removal efficiency was obtained under the circumstances of 1.0 g/L initial algae concentration and 10% carbon dioxide concentration in gas flow. In actual wastewater tests, the results revealed that the immobilized algae could uptake nitrogen and phosphate from final effluent and secondary treated wastewater. In addition, the results also showed that the greatest nitrogen and phosphorus removal efficiency was 95% and 99%, respectively, by immobilized microalgae in “A Factory” wastewater. Finally, the analysis of oil content in microalgae after the experiment of wastewater treatment verified that algae still have great potentiality of being the biodiesel feedstock.
關鍵字(中) ★ 固定化微藻
★ 廢水
★ 氮磷去除
★ 生質柴油
關鍵字(英) ★ immobilized microalgae
★ wastewater
★ nitrogen and phosphorus removal
★ biodiesel
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 ix
第一章 前言 1
1-1研究緣起 1
1-2研究目的 2
第二章 文獻回顧 3
2-1微藻應用的現況與價值 3
2-1-1微藻之生物特性 4
2-1-2藻類在廢水上之應用 5
2-1-3藻類在生質能上之應用 6
2-1-4小球藻(Chlorella sp.)之介紹 9
2-2廢水二級放流水處理之現況 11
2-2-1現行廢水二級放流水處理之問題 11
2-2-2現行微藻生物處理之問題 12
2-2-3微藻應用於廢水處理之優點 16
2-3微藻應用於廢水處理之機制 21
2-3-1微藻之固碳機制 21
2-3-2微藻利用氮磷之機制 23
2-3-3微藻產生油脂之機制 24
2-4微藻固定化 27
2-4-1微藻固定化之介紹 27
2-4-2微藻固定化之原理 31
2-4-3微藻固定化之優點 33
2-4-4藻體中油脂分析的方法 37
第三章 研究方法 39
3-1研究架構 39
3-2研究材料與藥品 40
3-2-1微藻來源及保存 40
3-2-2培養基及合成廢水配方 41
3-2-3實驗藥品 42
3-3實驗操作 43
3-3-1純化及培養微藻之實驗操作 43
3-3-2固定化之實驗操作步驟 45
3-3-3固定化藻類與懸浮性藻類的生長趨勢實驗操作 50
3-3-4合成廢水固碳去氮除磷實驗之操作 51
3-3-5實際廢水固碳去氮除磷實驗之操作 55
3-4分析方法 58
3-4-1分析項目 58
3-4-2分析藥品 59
3-4-3分析設備 60
第四章 結果與討論 61
4-1固定化最佳參數實驗 61
4-1-1固定化最適海藻酸鈉濃度及氯化鈣濃度 61
4-1-2固定化藻類及懸浮性藻類之生長趨勢 62
4-2合成廢水固碳去氮除磷實驗(改變CO2濃度及藻類初始濃度) 65
4-2-1不同二氧化碳濃度對於去氮除磷之影響 65
4-2-1-1 pH值變化 66
4-2-1-2藻類濃度變化 68
4-2-1-3氨氮濃度變化 73
4-2-1-4磷酸鹽濃度變化 75
4-2-2不同藻類初始濃度對於去氮除磷之影響 78
4-2-2-1 pH值變化 78
4-2-2-2藻類濃度變化 80
4-2-2-3氨氮濃度變化 84
4-2-2-4磷酸鹽濃度變化 86
4-3合成廢水固碳去氮除磷實驗(改善水中pH值) 89
4-3-1以硝酸鹽氮為氮源之實驗 90
4-3-1-1 pH值變化 90
4-3-1-2藻類濃度變化 92
4-3-1-3硝酸鹽氮及磷酸鹽濃度變化 94
4-3-2改變曝氣量之實驗 96
4-3-2-1 pH值變化 97
4-3-2-2藻類濃度變化 101
4-3-2-3氨氮及硝酸鹽氮濃度變化 106
4-3-2-4磷酸鹽濃度變化 109
4-3-3控制合成廢水pH值之實驗 111
4-3-3-1 pH值變化 112
4-3-3-2藻類濃度變化 115
4-3-3-3氨氮及硝酸鹽氮濃度變化 117
4-3-3-4磷酸鹽濃度變化 120
4-3-4總結合成廢水之實驗 124
4-3-4-1 pH值變化 124
4-3-4-2藻類濃度變化 127
4-3-4-3氨氮及磷酸鹽濃度變化 130
4-4實際廢水固碳去氮除磷實驗 133
4-4-1提供二氧化碳與否對於去氮除磷之影響 134
4-4-1-1 A廠最終放流水之結果 134
4-4-1-2 B廠最終放流水之結果 139
4-4-1-3 B廠二級處理水之結果 144
4-4-2改變廢水氮磷比對於去氮除磷之影響 148
4-4-2-1 A廠最終放流水之結果 149
4-4-2-2 B廠最終放流水之結果 152
4-4-2-3 B廠二級處理水之結果 154
4-4-3實際廢水實驗之藻類油脂分析 156
第五章 結論與建議 158
5-1結論 158
5-2建議 160
參考文獻 161
附錄一 固定化高濃度微藻之現象 170
附錄二 藻類初始濃度1.0 g/L實驗之各項分析數據圖 173
附錄三 二氧化碳濃度10 %實驗之各項分析數據圖 174
參考文獻 1.Akerstrom, A. M., L. M. Mortensen, B. Rusten, and H. R. Gislerod, “Biomass production and nutrient removal by Chlorella sp. as affected by sludge liquor concentration”, Journal of Environmental Management, vol. 144, pp. 118-124, (2014).
2.Aksu, Z., S. Ertugrul, and G. Donmez, “Single and binary chromium(VI) and Remazol Black B biosorption properties of Phormidium sp”, Journal of hazardous materials, vol. 168, pp. 310-318, (2009).
3.Amaro, H. M., A. C. Guedes, and F. X. Malcata, “Advances and perspectives in using microalgae to produce biodiesel”, Applied Energy, vol. 88, pp. 3402-3410,(2011).
4.Badger, M. R., and G. D. Price, “Carbonic Anhydrase Activity Associated with the Cyanobacterium Synechococcus PCC7942”, Plant Physiology, vol. 89, pp. 51-60, (1989).
5.Bailliez, C., C. Largeau, and E. Casadevall, “Growth and hydrocarbon production ofBotryococcus braunii immobilized in calcium alginate gel”, Applied microbiology and biotechnology, vol. 23, pp. 99-105, (1985).
6.Banerjee, A., R. Sharma, Y. Chisti, and U. C. Banerjee, “Botryococcus braunii a renewable source of hydrocarbons and other chemicals”, Critical Reviews in Biotechnology, vol. 22, pp. 245-279, (2002).
7.Bayramoğlu, G., I. Tuzun, G. Celik, M. Yilmaz, and M. Y. Arica, “Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads”, International Journal of Mineral Processing, vol. 81, pp. 35-43, (2006).
8.Bondioli, P., L. Della Bella, G. Rivolta, G. Chini Zittelli, N. Bassi, L. Rodolfi, D. Casini, M. Prussi, D. Chiaramonti, and M. R. Tredici, “Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33”, Bioresource technology, vol. 114, pp. 567-572, (2012).
9.Bungay, H. R., “Confessions of a bioenergy advocate”, Trends in biotechnology, vol. 22, pp. 67-71, (2004).
10.Castellanos, C. S.,「Batch and Continuous Studies of Chlorella Vulgaris in Photo-Bioreactors」,Graduate Program in Chemical and Biochemical Engineering,Western Ontario London,Graduate and Postdoctoral Studies,Canada,(2013)。
11.Chen, W., C. Zhang, L. Song, M. Sommerfeld, and Q. Hu, “A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae”, Journal of microbiological methods, vol. 77, pp. 41-47, (2009).
12.Chevalier, P., and J. d. l. Noüe, “Wastewater nutrient removal with microalgae immobilized in carrageenan”, Enzyme and Microbial Technology, vol. 7, pp. 621-624, (1985).
13.Chisti, Y., “Biodiesel from microalgae”, Biotechnology advances, vol. 25, pp. 294-306, (2007).
14.Cho, S., T. T. Luong, D. Lee, Y. K. Oh, and T. Lee, “Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production”, Bioresource technology, vol. 102, pp. 8639-8645, (2011).
15.Choi, H.-J., and S.-M. Lee, “Effects of Microalgae on the Removal of Nutrients Effects of Microalgae on the Removal of Nutrients”, Environmental Engineering Research, vol. 17, pp. 53-58, (2012).
16.Choi, H.-J., and S.-M. Lee, “Performance of Chlorella vulgaris for the Removal of Ammonia-Nitrogen from Wastewater”, Environmental Engineering Research, vol. 18, pp. 235-239, (2013).
17.Concas, A., G. A. Lutzu, M. Pisu, and G. Cao, “Experimental analysis and novel modeling of semi-batch photobioreactors operated with Chlorella vulgaris and fed with 100% (v/v) CO2”, Chemical Engineering Journal, vol. 213, pp. 203-213, (2012).
18.Dalrymple, O. K., T. Halfhide, I. Udom, B. Gilles, J. Wolan, Q. Zhang, and S. Ergas, “Wastewater use in algae production for generation of renewable resources a review and preliminary results”, Aquatic Biosystems, vol. 9:2, pp. 1-11, (2013).
19.Daly, M. M., and D. Knorr, “Chitosan-Alginate Complex Coacervate Capsules: Effects of Calcium Chloride, Plasticizers, and Polyelectrolytes on Mechanical Stability”, Biotechnology Progress, vol. 4, pp. 76-81, (1988).
20.de-Bashan, L. E., and Y. Bashan, “Immobilized microalgae for removing pollutants: review of practical aspects”, Bioresource technology, vol. 101, pp. 1611-1627, (2010).
21.de-Bashan, L. E., J. P. Hernandez, T. Morey, and Y. Bashan, “Microalgae growth-promoting bacteria as "helpers" for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater”, Water research, vol. 38, pp. 466-474, (2004).
22.Demirbas, A., “Use of algae as biofuel sources”, Energy Conversion and Management, vol. 51, pp. 2738-2749, (2010).
23.Du, Z., B. Hu, A. Shi, X. Ma, Y. Cheng, P. Chen, Y. Liu, X. Lin, and R. Ruan, “Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process”, Bioresource technology, vol. 126, pp. 354-357, (2012).
24.Ebeling, J. M., M. B. Timmons, and J. J. Bisogni, “Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems”, Aquaculture, vol. 257, pp. 346-358, (2006).
25.Faafeng, B. A., E. v. Donk, and S. T. Kallqvist, “In situ measurement of algal growth potential in aquatic ecosystems by immobilized algae”, Journal of Applied Phycology, vol. 6, pp. 301-308, (1994).
26.Fernandes, B. D., G. M. Dragone, J. A. Teixeira, and A. A. Vicente, “Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content”, Applied biochemistry and biotechnology, vol. 161, pp. 218-226, (2010).
27.Gerardo, M. L., S. Van Den Hende, H. Vervaeren, T. Coward, and S. C. Skill, “Harvesting of microalgae within a biorefinery approach: A review of the developments and case studies from pilot-plants”, Algal Research, vol. 11, pp. 248-262, (2015).
28.Gombotz, W. R., and S. F. Wee, “Protein release from alginate matrices”, Advanced Drug Delivery Reviews, vol. 64, pp. 194-205, (2012).
29.Guschina, I. A., and J. L. Harwood, “Lipids and lipid metabolism in eukaryotic algae”, Progress in Lipid Research, vol. 45, pp. 160-186, (2006).
30.Hammouda, O., A. Gaber, and N. Abdel-Raouf, “Microalgae and Wastewater Treatment”, Ecotoxicology and Environmental Safety, vol. 31, pp. 205-210, (1995).
31.Han, X., Y. S. Wong, M. H. Wong, and N. F. Tam, “Biosorption and bioreduction of Cr(VI) by a microalgal isolate, Chlorella miniata”, Journal of hazardous materials, vol. 146, pp. 65-72, (2007).
32.Hanagata, N., T. Takeuchia, Y. Fukuju, D. J. Barnesa, and I. Karubea, “Tolerance of microalgae to high CO2 and high temperature”, Phytochemistry, vol. 31, pp. 3345-3348, (1992).
33.Harun, R., M. Singh, G. M. Forde, and M. K. Danquah, “Bioprocess engineering of microalgae to produce a variety of consumer products”, Renewable and Sustainable Energy Reviews, vol. 14, pp. 1037-1047, (2010).
34.He, S., and G. Xue, “Algal-based immobilization process to treat the effluent from a secondary wastewater treatment plant (WWTP)”, Journal of hazardous materials, vol. 178, pp. 895-899, (2010).
35.Ho, S. H., C. Y. Chen, D. J. Lee, and J. S. Chang, “Perspectives on microalgal CO2-emission mitigation systems-a review”, Biotechnology advances, vol. 29, pp. 189-198, (2011).
36.Hoshida, H., T. Ohira, A. Minematsu, R. Akada, and Y. Nishizawa, “Accumulation of eicosapentaenoic acid in Nannochloropsis sp. in response to elevated CO2 concentrations”, Journal of Applied Phycology, vol. 17, pp. 29-34, (2005).
37.Hu, B., W. Zhou, M. Min, Z. Du, P. Chen, X. Ma, Y. Liu, H. Lei, J. Shi, and R. Ruan, “Development of an effective acidogenically digested swine manure-based algal system for improved wastewater treatment and biofuel and feed production”, Applied Energy, vol. 107, pp. 255-263, (2013).
38.Hu, Q., M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, and A. Darzins, “Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances”, Plant Journal, vol. 54, pp. 621-639, (2008).
39.Huanga, G., F. Chenb, D. Weic, X. Zhangc, and G. Chen, “Biodiesel production by microalgal biotechnology”, Applied Energy, vol. 87, pp. 38-46, (2010).
40.Iverson, T. M., “Evolution and unique bioenergetic mechanisms in oxygenic photosynthesis”, Current Opinion in Chemical Biology, vol. 10, pp. 91-100, (2006).
41.Jeong, M. L., J. M. Gillis, and J.-Y. Hwang, “Carbon dioxide mitigation by microalgal photosynthesis”, Bulletin of the Korean Chemical Society, vol. 24, pp. 1763-1766, (2003).
42.Johnson, H., “Resource limitation affects productivity and heterocyst formation in nitrogen-fixing cyanobacteria”, Environmental Science, (2011).
43.Kousha, M., O. Farhadian, S. Dorafshan, N. M. Soofiani, and A. Bhatnagar, “Optimization of malachite green biosorption by green microalgae—Scenedesmus quadricauda and Chlorella vulgaris: Application of response surface methodology”, Journal of the Taiwan Institute of Chemical Engineers, vol. 44, pp. 291-294, (2013).
44.Kumar, A., X. Yuan, A. K. Sahu, J. Dewulf, S. J. Ergas, and H. Van Langenhove, “A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach”, Journal of Chemical Technology & Biotechnology, vol. 85, pp. 387-394, (2010).
45.Laua, P. S., N. F. Y. Tamb, and Y. S. Wong, “Effect of algal density on nutrient removal from primary settled wastewater”, Environmental Pollution, vol. 89, pp. 59-66, (1995).
46.Lee, S. J., B.-D. Yoon, and H.-M. Oh, “Rapid method for the determination of lipid from the green alga Botryococcus braunii”, Biotechnology Techniques, vol. 12, pp. 553-556, (1998).
47.Li, Y. “Cultivation of algae on highly concentrated municipal wastewater as an energy crop for biodiesel production”, minnesota university, doctor, (2012).
48.Li, Y., Y. F. Chen, P. Chen, M. Min, W. Zhou, B. Martinez, J. Zhu, and R. Ruan, “Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production”, Bioresource technology, vol. 102, pp. 5138-5144, (2011).
49.Liu, Z. Y., G. C. Wang, and B. C. Zhou, “Effect of iron on growth and lipid accumulation in Chlorella vulgaris”, Bioresource technology, vol. 99, pp. 4717-4722, (2008).
50.Mallick, N., “Biotechnological potential of immobilized algae for wastewater N,P and metal removal A review”, BioMetals, vol. 15, pp. 377-390, (2002).
51.Martinez, M. E., S. Sanchez, J. M. Jimenez, F. E. Yousfi, and L. Munoz, “Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus”, Bioresource technology, vol. 73, pp. 263-272, (2000).
52.Meher, L. C., D. V. Sagar, and S. N. Naik, “Technical aspects of biodiesel production by transesterification—a review”, Renewable and Sustainable Energy Reviews, vol. 10, pp. 248-268, (2006).
53.Metzger, P., and C. Largeau, “Botryococcus braunii: a rich source for hydrocarbons and related ether lipids”, Applied microbiology and biotechnology, vol. 66, pp. 486-496, (2005).
54.Miller, A. G., G. S. Espie, and D. T. Canvin, “Physiological aspects of CO2 and HCO3- transport by cyanobacteria : a review”, Canadian Journal of Botany, vol. 68, pp. 1291-1302, (1990).
55.Munoz, R., and B. Guieysse, “Algal-bacterial processes for the treatment of hazardous contaminants: a review”, Water research, vol. 40, pp. 2799-2815, (2006).
56.Nielsen, E. S., “Carbon Dioxide as Carbon Source and Narcotic in Photosynthesis and Growth of Chlorella Pyrenoidosa”, Physiologia Plantarum, vol. 8, pp. 317-334, (1955).
57.Oswald, W. J., A. M. Asce, and H. B. Gotaas, “Photosynthesis in Sewage Treatment”, American Society of Civil Engineers, vol. 122, pp. 73-105, (1957).
58.Paques, J. P., E. van der Linden, C. J. van Rijn, and L. M. Sagis, “Preparation methods of alginate nanoparticles”, Advances in Colloid and Interface Science, vol. 209, pp. 163-171, (2014).
59.Pittman, J. K., A. P. Dean, and O. Osundeko, “The potential of sustainable algal biofuel production using wastewater resources”, Bioresource technology, vol. 102, pp. 17-25, (2011).
60.Radakovits, R., R. E. Jinkerson, S. I. Fuerstenberg, H. Tae, R. E. Settlage, J. L. Boore, and M. C. Posewitz, “Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana”, Nature Communications, vol. 3, pp. 1-10, (2012).
61.Radovich, J. M., “Mass transfer limitations in immobilized cells”, Biotechnology advances, vol. 3, pp. 1-12, (1985).
62.Rashid, N., K. Lee, J. I. Han, and M. Gross, “Hydrogen production by immobilized Chlorella vulgaris: optimizing pH, carbon source and light”, Bioprocess and biosystems engineering, vol. 36, pp. 867-872, (2013).
63.Rathore, S., P. M. Desai, C. V. Liew, L. W. Chan, and P. W. S. Heng, “Microencapsulation of microbial cells”, Journal of Food Engineering, vol. 116, pp. 369-381, (2013).
64.Reitan, K. I., J. R. Rainuzzo, and Y. Olsen, “Effect of nutrient limitation on fatty-acid and lipid-content of marine microalgae”, Journal of Phycology, vol. 30, pp. 972-979, (1994).
65.RiceUniversity, “Algae from wastewater solves two problems : Biofuel and clean-up”, ScienceDaily, (2015).
66.Richardson, J. W., M. D. Johnson, R. Lacey, J. Oyler, and S. Capareda, “Harvesting and extraction technology contributions to algae biofuels economic viability”, Algal Research, vol. 5, pp. 70-78, (2014).
67.Robinson, P. K., “Effect of pre-immobilization conditions on phosphate uptake by immobilized Chlorella”, Biotechnology Letters, vol. 17, pp. 659-662, (1985).
68.Romo, S., and C. P. Martinez, “The use of immobilization in alginate beads for long-term storage of Pseudanabaena galeata (Cyanobacteria) in the laboratory”, Journal of Phycology, vol. 33, pp. 1073-1076, (1997).
69.Ruiz-Marin, A., L. G. Mendoza-Espinosa, and T. Stephenson, “Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater”, Bioresource technology, vol. 101, pp. 58-64, (2010).
70.Satyanarayana, K. G., A. B. Mariano, and J. V. C. Vargas, “A review on microalgae, a versatile source for sustainable energy and materials”, International Journal of Energy Research, vol. 35, pp. 291-311, (2011).
71.Sawyer, C. N., P. L. McCarty, and G. F. Parkin,“chemistry for environmental engineering and science” McGraw-Hill Companies (1994).
72.Sheehan, J., T. Dunahay, J. Benemann, and P. Roessler, “A Look Back at the U.S. Department of Energy′s Aquatic Species Program-Biodiesel from Algae”, National Renewable Energy Laboratory, (1998).
73.Singh, S. K., A. Bansal, M. K. Jha, and A. Dey, “An integrated approach to remove Cr(VI) using immobilized Chlorella minutissima grown in nutrient rich sewage wastewater”, Bioresource technology, vol. 104, pp. 257-265, (2012).
74.Singh, S. P., and P. Singh, “Effect of temperature and light on the growth of algae species: A review”, Renewable and Sustainable Energy Reviews, vol. 50, pp. 431-444, (2015).
75.Spalding, M. H., “Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters”, Journal of Experimental Botany, vol. 59, pp. 1463-1473, (2008).
76.Sung, K. D., J. S. Lee, C. S. Shin, S. C. Park, and M. J. Choih, “CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics”, Bioresource technology, vol. 68, pp. 269-273, (1999).
77.Tam, N. F. Y., and Y. S. Wong, “Effect of immobilized microalgal bead concentrations on wastewater nutrient removal”, Environmental Pollution, vol. 107, pp. 145-151, (2000).
78.Tuzun, I., G. Bayramoglu, E. Yalcin, G. Basaran, G. Celik, and M. Y. Arica, “Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii”, Journal of environmental management, vol. 77, pp. 85-92, (2005).
79.Ugwu, C. U., H. Aoyagi, and H. Uchiyama, “Photobioreactors for mass cultivation of algae”, Bioresource technology, vol. 99, pp. 4021-4028, (2008).
80.Walker, D. A., “Biofuels, facts, fantasy, and feasibility”, Journal of Applied Phycology, vol. 21, pp. 509-517, (2009).
81.Wan, C., M. A. Alam, X. Q. Zhao, X. Y. Zhang, S. L. Guo, S. H. Ho, J. S. Chang, and F. W. Bai, “Current progress and future prospect of microalgal biomass harvest using various flocculation technologies”, Bioresource technology, vol. 184, pp. 251-257, (2015).
82.Wang, B., and C. Q. Lan, “Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent”, Bioresource technology, vol. 102, pp. 5639-5644, (2011).
83.Wang, B., Y. Li, N. Wu, and C. Q. Lan, “CO(2) bio-mitigation using microalgae”, Applied microbiology and biotechnology, vol. 79, pp. 707-718, (2008).
84.Wang, P., L. Luo, L. Ke, T. Luan, and N. F. Tam, “Combined toxicity of polycyclic aromatic hydrocarbons and heavy metals to biochemical and antioxidant responses of free and immobilized Selenastrum capricornutum”, Environmental Toxicology Chemistry, vol. 32, pp. 673-683, (2013).
85.Wilkie, A. C., and W. W. Mulbry, “Recovery of dairy manure nutrients by benthic freshwater algae”, Bioresource technology, vol. 84, pp. 81-91, (2002).
86.Yang, G.-j., Z.-q. Luan, X.-h. Zhou, and Y. Mei, “The researching of the effect of temperature on Chlorella growth and content of dissolved oxygen and content of chlorophyll”, Mathematical and Physical Fisheries Science, vol. 8, pp. 68-74, (2010).
87.Yeh, K.-L., J.-S. Chang, and W.-m. chen, “Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31”, Engineering in Life Science, vol. 10, pp. 201-208, (2010).
88.Yue, L., and W. Chen, “Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae”, Energy Conversion and Management, vol. 46, pp. 1868-1876, (2005).
89.Zeng, X., M. K. Danquah, R. Potumarthi, J. Cao, X. D. Chen, and Y. Lu, “Characterization of sodium cellulose sulphate/poly-dimethyl-diallyl-ammonium chloride biological capsules for immobilized cultivation of microalgae”, Journal of Chemical Technology & Biotechnology, vol. 88, pp. 599-605, (2013).
90.石濤,「環境化學」,鼎茂圖書出版股份有限公司,(2007)。
91.江善宗,殷儷容,「纖維素水解酵素於綠藻工業之應用研究」,農業生技產業季刊,第7期,(2006)。
92.行政院環保署,「高科技產業廢水水質特性分析及管制標準探討計畫」,(2008)。
93.吳珊,張曉萍,張福萍,「2種藻類儲磷釋磷過程與生長情況對比」,河南大學學報(自然科學報),第38期,pp. 15-19,(2010)。
94.李中光,李柏宏,劉新校,邱惠敏,「淺談廢水中的儲磷及磷回收技術」,桃園縣大學校院產業環保技術服務團環保簡訊,第29期,(2015)。
95.李中光,劉新校,劉佳雯,「淺談利用藻類去除廢水中之氮磷」,桃園縣大學校院產業環保技術服務團環保簡訊,第15期,(2012)。
96.沈根祥,朱荫湄,雷萍,「藻類凈化含氮磷有機污水及其利用研究進展」,農業環境保護,第20期,pp. 381-383,(2001)。
97.周廷耀,「碳源的添加對等鞭金藻增殖的影響」,海洋生物研究所,國立中山大學,碩士,高雄,(2003)。
98.孫小靜,秦伯強,朱廣偉,「藍藻死亡分解過程中膠體態磷、氮、有機碳的釋放」,中國環境科學,第27期,pp. 341-345,(2007)。
99.秦力,「固定化微球製備技術及相關性能研究」,藥物化學研究所,重慶大學,碩士,重慶,(2006)。
100.高千雅,「建立一光生物反應系統用於微藻的高密度養殖與二氧化碳的減量」,生物科技學院生化工程研究所,國立交通大學,碩士,新竹,(2009)。
101.張向陽,邪麗貞,張彥浩,吳星五,「固定化小球藻去除污水中氮、磷的試驗研究」,China water & wastewater,第24期,pp. 95-101,(2008)。
102.張聖雄,陳見財,陳良棟,「廢水生物處理程序常見問題實務探討」,工業污染防治,第97期,pp. 69-87,(2006)。
103.張嘉修,陳俊延,林志生,楊勝仲,周德珍,郭子禎,顏宏偉,李澤民,「二氧化碳再利用-微藻養殖」,科學發展,第510期,(2015)。
104.彭于華,「探討以淡水藻類固定二氧化碳之生長條件」,環境工程與科學系,國立屏東科技大學,碩士,屏東,(2009)。
105.黃文楷,吳淑姿,余世宗,「不同培養條件對擬球藻生長與油脂生合成量之影響」,科學與工程技術期刊,第11期,pp. 21-28,(2015)。
106.黃愛蘋,「利用微藻去除工業廢水中氮、磷並產生生質柴油之可行性研究」,環境工程學系,國立中興大學,碩士,台中,(2010)。
107.趙文榮,「以褐藻膠(alginate)將經濟性微細藻類進行包埋及固定保種實驗」,(2012)。
108.歐陽崢嶸,溫小斌,耿亞紅,梅洪,胡鴻鈞,張桂艷,李夜光,「光照強度、溫度、pH、鹽度對小球藻(Chlorella)光合作用的影響」,武漢植物學研究,第28期,pp. 49-55,(2010)。
109.鄭翔勻,「Chlorella sp.攝取工業廢水營養鹽並固定二氧化碳之研究」,環境工程研究所,國立中央大學,碩士,桃園,(2014)。
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2016-6-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明