博碩士論文 102326017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:35.153.39.7
姓名 簡芳瑜(Fang-Yu Chien)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以三相碳酸化系統探討還原碴封存二氧化碳 之研究
(The Study on Sequestration of Carbon Dioxide by Reductive Slag in a Three-Phase Carbonation System)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究是以電弧爐還原碴為二氧化碳封存材料,於常溫常壓、總氣體流量1 LPM下進行氣/固/液三相碳酸化反應,藉以探討不同之操作參數,包括固液比、液相鈣離子濃度、二氧化碳濃度、及間歇/連續式通氣,對碳酸化效率及三相碳酸化反應機制的影響。
本研究試驗結果發現,於連續通入二氧化碳氣體情況下,碳酸化效率並非隨固液比增加而增加,其最佳的固液比為20 g/L。當液相鈣離子濃度由500 mg-Ca2+/L提高至1500 mg-Ca2+/L,不僅還原碴中之鈣離子利用率,由78.0%提升至83.3%,且液相含鈣溶液之鈣離子利用率,亦從78.8%升至97.3%,同時在反應系統中,來自兩種不同相態的鈣離子,會與碳酸根產生競爭反應的現象。於間歇式通入二氧化碳氣體情況下,在停止通氣期間,會暫時中斷碳酸化反應,促使還原碴進一步溶出鈣離子,短暫增加漿體中鈣離子濃度。於連續式通氣、12 vol% CO2、0 mg-Ca2+/L的含鈣溶液及固液比30 g/L條件下,操作60分鐘,其三相碳酸化反應之碳酸化效率高達92.2%。
反應動力分析結果顯示,於連續通氣、液相鈣離子濃度為0 mg-Ca2+/L之操作條件下,其反應動力符合表面覆蓋模式,且鈣離子從還原碴中溶出成為速率限制步驟,但隨液相鈣離子濃度增加,其反應動力則會越趨偏離表面覆蓋模式。另一方面,間歇式通氣之三相碳酸化反應,不適合以表面覆蓋模式描述其反應動力行為,表示間歇式通氣系統,可能不會產生碳酸鈣層阻礙還原碴溶出鈣離子。
摘要(英)

The study carried out a gas/solid/liquid three-phase carbonation reaction by using reductive slag as carbon dioxide sequestration material under gas flow rate of 1 LPM at ambient temperature and pressure conditions. The effects of various operation parameters, including solid-liquid ratio, initial calcium concentration in liquid phase, carbon dioxide concentration in gas phase, and intermittent/continuous aeration, on the carbonation efficiency and reaction mechanisms in a three-phase carbonation system were investigated.
The experimental results found that the carbonation efficiency did not increase with the increase of solid-liquid ratio under continuous aeration of carbon dioxide, and the optimum solid-liquid ratio was 20 g/L. When the initial concentration of cal-cium in liquid phase increased from 500 mg-Ca2+/L to 1500 mg-Ca2+/L, not only the calcium utilization efficiency in slag raised from 78.0% to 83.3%, but made calcium utilization efficiency in solution elevated from 78.8% to 97.3%. In addition, the cal-cium came from the different two phases resulted in the competitive phenomenon for carbonate ion in the reaction system. Under intermittent aeration of carbon dioxide, the carbonation reaction was interrupted temporarily during the period of stop-aeration. Consequently, the calcium in slag was further leached out and im-permanent increased the calcium concentration in slurry. Moreover, this study re-vealed that 92.2% carbonation efficiency was achieved under the operation conditions of continuous aeration, 12 vol% of CO2 gas, 0 mg-Ca2+/L of liquid and solid-liquid ratio of 30 g/L at 60 min reaction time in a three phase carbonation system.
The result of reaction kinetics analysis indicated that the reaction of carbona-tion under continuous aeration and 0 mg-Ca2+/L in initial solution conformed to the surface coverage model; also the rate limiting step was the leaching of calcium from slag. However, the fitting degree became lower with the increase of initial calcium in liquid phase. As for three-phase carbonation under intermittent aeration, it was not suitable to describe the reaction kinetics by surface coverage model, because the calcium carbonate layer would not be formed on the slag surface to obstruct the leaching out of calcium ion in slag.
關鍵字(中) ★ 三相碳酸化
★ 還原碴
★ 二氧化碳封存
★ 間歇式通氣
★ 含鈣溶液
★ 表面覆蓋模式
關鍵字(英) ★ three-phase carbonation
★ reductive slag
★ CO2 sequestration
★ intermittent aeration
★ liquid phase with calcium
★ surface coverage model
論文目次

摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 ix
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 適用封存二氧化碳之材料 3
2-1-1 礦物封存概念 3
2-1-2 選擇材料之依據 4
2-1-3 鋼鐵業爐碴特性 7
2-2 碳酸化反應 10
2-2-1 碳酸化反應之機制與途徑 10
2-2-2 碳酸化反應影響因子 13
2-3 氣固液相碳酸化反應之限制與研究現況 19
2-3-1 反應速率限制步驟 19
2-3-2 近年國內外研究現況 22
2-4 提升碳酸化效率 25
2-4-1 程序強化 25
2-4-2 活化反應物 27
2-5 碳酸化反應動力模式 30
2-5-1 縮核模式(Shrinking Core Model) 30
2-5-2 表面覆蓋模式(Surface Coverage Model) 32
第三章 實驗材料與研究方法 34
3-1 研究架構與流程 34
3-2 實驗材料與反應設備 36
3-2-1 實驗材料 36
3-2-2 反應器與主要設備 36
3-3 分析方法與試驗 37
3-3-1 還原碴前處理 37
3-3-2 還原碴物理性質分析 39
3-3-3 還原碴化學性質分析 40
3-3-4 精密儀器分析原理及方法 42
3-4 試驗與實驗方法 45
3-4-1 排序試驗 45
3-4-2 攪動試驗 50
3-4-3 氣固液相碳酸化實驗 50
3-4-4 氣固液相碳酸化效率計算 53
第四章 結果與討論 56
4-1 還原碴之特性分析 56
4-1-1 還原碴之物理特性 56
4-1-2 還原碴之化學特性 59
4-2 反應操作建立 61
4-2-1 排序試驗 61
4-2-2 攪動試驗 65
4-3 氣固液相碳酸化反應 69
4-3-1 固液比的影響 70
4-3-2 液相鈣離子濃度的影響 72
4-3-3 二氧化碳濃度的影響 78
4-3-4 間接與連續通氣方式的影響 81
4-3-5 碳酸化反應產物特性 91
4-4 氣固液相碳酸化反應動力模式 97
4-4-1 液相含鈣溶液之碳酸化動力模式 97
4-4-2 間歇式通氣之碳酸化反應動力模式 99
4-5 氣固液相碳酸化反應機制 102
4-5-1 液相含鈣溶液之碳酸化反應機制 102
4-5-2 間歇式通氣碳酸化反應機制 103
第五章 結論與建議 105
5-1 結論 105
5-2 建議 107
參考文獻 108
附錄 115
參考文獻

Béarat, H., M. J. McKelvy, A. V. G. Chizmeshya, D. Gormley, R. Nunez, R. W. Carpenter, K. Squires, and G. H. Wolf, “Carbon Sequestration via Aqueous Olivine Mineral Carbonation:  Role of Passivating Layer Formation”, Environmental Science & Technology, vol. 40, pp. 4802-4808, (2006).
2. Baciocchi, R., G. Costa, A. Polettini, and R. Pomi, “Effects of thin-film accelerated carbonation on steel slag leaching”, Journal of Hazardous Materials, vol. 286, pp. 369-378, (2015).
3. Bang, J.-H., Y. N. Jang, W. Kim, K. S. Song, C. W. Jeon, S. C. Chae, S.-W. Lee, S.-J. Park, and M. G. Lee, “Precipitation of calcium carbonate by carbon dioxide microbubbles”, Chemical Engineering Journal, vol. 174, pp. 413-420, (2011).
4. Bonenfant, D., L. Kharoune, S. Sauvé, R. Hausler, P. Niquette, M. Mimeault, and M. Kharoune, “Molecular analysis of carbon dioxide adsorption processes on steel slag oxides”, International Journal of Greenhouse Gas Control, vol. 3, pp. 20-28, (2009).
5. Bonenfant, D., L. Kharoune, S. b. Sauve´, R. Hausler, P. Niquette, M. Mimeault, and M. Kharoune, “CO2 Sequestration Potential of Steel Slags at Ambient Pressure and Temperature”, Industrial & Engineering Chemistry Research, vol. 47, pp. 7610-7616, (2008).
6. Bonfils, B., F. Bourgeois, C. Julcour, F. Guyot, and P. Chiquet, “Understanding the chemistry of direct aqueous carbonation with additives through geochemical modelling”, Energy Procedia, vol. 4, pp. 3809-3816, (2011).
7. Castellote, M., and C. Andrade, “Modelling the carbonation of cementitious matrixes by means of the unreacted-core model, UR-CORE”, Cement and Concrete Research, vol. 38, pp. 1374-1384, (2008).
8. Chang, E. E., A.-C. Chiu, S.-Y. Pan, Y.-H. Chen, C.-S. Tan, and P.-C. Chiang, “Carbonation of basic oxygen furnace slag with metalworking wastewater in a slurry reactor”, International Journal of Greenhouse Gas Control, vol. 12, pp. 382-389, (2013).
9. Chang, E. E., S. Y. Pan, Y. H. Chen, C. S. Tan, and P. C. Chiang, “Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed”, Journal of
Hazardous Materials, vol. 227-228, pp. 97-106, (2012).
10. Carbon Sequestration Leadership Forum, “inFocus:what is carbon utilization?”, (2011).
11. Dario T. Beruto, R. B., “Liquid-like H2O adsorption layers to catalyze the Ca(OH)2/CO2 solid-gas reaction and to form a non-protective solid product layer at 20℃”, European Ceramic Society, vol. 20, pp. 497-503, (2000).
12. Domingo, C., E. Loste, J. Gómez-Morales, J. García-Carmona, and J. Fraile, “Calcite precipitation by a high-pressure CO2 carbonation route”, The Journal of Supercritical Fluids, vol. 36, pp. 202-215, (2006).
13. Eloneva, S., S. Teir, J. Salminen, C.-J. Fogelholm, and R. Zevenhoven, “Fixation of CO2 by carbonating calcium derived from blast furnace slag”, Energy, vol. 33, pp. 1461-1467, (2008).
14. Faruque Hasan, M. M., E. L. First, F. Boukouvala, and C. A. Floudas, “A Novel Framework for Carbon Capture, Utilization, and Sequestration, CCUS”, in Mario R. Eden, J. D. S., and P. T. Gavin, eds., Computer Aided Chemical Engineering, vol. 34, Elsevier, pp. 98-107, (2014).
15. Fernández Bertos, M., S. J. R. Simons, C. D. Hills, and P. J. Carey, “A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2”, Journal of Hazardous Materials, vol. 112, pp. 193-205, (2004).
16. Gogate, P. R., V. S. Sutkar, and A. B. Pandit, “Sonochemical reactors: Important design and scale up considerations with a special emphasis on heterogeneous systems”, Chemical Engineering Journal, vol. 166, pp. 1066-1082, (2011).
17. Han, S.-J., H. J. Im, and J.-H. Wee, “Leaching and indirect mineral carbonation performance of coal fly ash-water solution system”, Applied Energy, vol. 142, pp. 274-282, (2015).
18. Han, S.-J., M. Yoo, D.-W. Kim, and J.-H. Wee, “Carbon Dioxide Capture Using Calcium Hydroxide Aqueous Solution as the Absorbent”, Energy & Fuels, vol. 25, pp. 3825-3834, (2011).
19. Huijgen, W. J. J., and R. N. J. Comans, “Carbon dioxide sequestration by mineral carbonation Literature Review ”, ECN-Clean Fossil Fuels Environmental Risk
Assessment, ECN-C--03-016, (2003).
20. Huijgen, W. J. J., and R. N. J. Comans, “Mineral CO2 Sequestration by carbonation of industrial residues”, ECN, ECN-C--05-074, pp. 22, (2005a).
21. Huijgen, W. J. J., and R. N. J. Comans, “Mineral CO2 Sequestration by Steel Slag Carbonation”, Environmental Science & Technology, vol. 39, pp. 9676-9682, (2005b).
22. Huijgen, W. J. J., G. J. Ruijg, R. N. J. Comans, and G.-J. Witkamp, “Energy Consumption and Net CO2 Sequestration of Aqueous Mineral Carbonation”, Industrial & Engineering Chemistry Research, vol. 45, pp. 9184-9194, (2006a).
23. Huijgen, W. J. J., G.-J. Witkamp, and R. N. J. Comans, “Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process”, Chemical Engineering Science, vol. 61, pp. 4242-4251, (2006b).
24. IEA, “World Energy Outlook 2012”, Organization for Economic Co-operation and Developmen publishing, Paris, (2012).
25. Iizuka, A., M. Fujii, A. Yamasaki, and Y. Yanagisawa, “Development of a New CO2 Sequestration Process Utilizing the Carbonation of Waste Cement”, Industrial & Engineering Chemistry Research, vol. 43, pp. 7880-7887, (2004).
26. Jung, S., L. P. Wang, G. Dodbiba, and T. Fujita, “Two-step accelerated mineral carbonation and decomposition analysis for the reduction of CO2 emission in the eco-industrial parks”, Journal of Environmental Sciences, vol. 26, pp. 1411-1422, (2014).
27. Khunthongkeaw, J., S. Tangtermsirikul, and T. Leelawat, “A study on carbonation depth prediction for fly ash concrete”, Construction and Building Materials, vol. 20, pp. 744-753, (2006).
28. Kodama, S., T. Nishimoto, N. Yamamoto, K. Yogo, and K. Yamada, “Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution”, Energy, vol. 33, pp. 776-784, (2008).
29. Lackner, K. S., “Carbonate Chemistry for Sequestering Fossil Carbon”, Annual Review of Energy and the Environment, vol. 27, pp. 193-232, (2002).
30. Lackner, K. S., “Climate change. A guide to CO2 sequestration”, Science, vol. 300, pp. 1677-1678, (2003).
31. Lekakh, S. N., C. H. Rawlins, D. G. C. Robertson, V. L. Richards, and K. D. Peaslee, “Kinetics of Aqueous Leaching and Carbonization of Steelmaking Slag”, Metallurgical and Materials Transactions B, vol. 39, pp. 125-134, (2008).
32. Levenspiel, O., Chemical Reaction Engineering, Third edition, John Wiley and Sons, (1999)
33. Li, Q., Z. A. Chen, J. T. Zhang, L. C. Liu, X. C. Li, and L. Jia, “Positioning and revision of CCUS technology development in China”, International Journal of Greenhouse Gas Control, vol. 46, pp. 282-293, (2016).
34. Lide, D. R., CRC Handbook of Chemistry and Physics, 86th edition, Chemical Engineering Research and Design, vol. 84, pp. 416, (2006).
35. M. Kukizati, T. N., G. Song, and Y. Kohama, “Generation of monodisperse nanobubbles using a porous glass membrane and control of bubble diameter”, Kagaku Kogaku Ronbunshu, vol. 30, pp. 654–659, (2004).
36. Maries, A. , “The activation of Portland cement by carbon dioxide. Proceeding of Conference in Cement and Concrete Science” , Oxford, UK, (1985).
37. Mattila, H.-P., and R. Zevenhoven, “Chapter Ten - Production of Precipitated Calcium Carbonate from Steel Converter Slag and Other Calcium-Containing Industrial Wastes and Residues”, in Michele, A., and E. Rudi van, eds., Advances in Inorganic Chemistry, Academic Press, vol. 66, pp. 347-384, (2014).
38. McKelvy, M. J., A. V. G. Chizmeshya, K. Squires, R. W. Carpenter, and H. Béarat, “A novel approach to mineral carbonation: Enhancing carbonation while avoiding mineral pretreatment process cost”, Center for Solid State Science, Arizona State University, (2006).
39. Metz, B., O. Davidson, H. d. Coninck, M. Loos, and L. Meyer, IPCC Special Report on Carbon dioxide Capture and Storage, United States of America by Cambridge University Press, New York, (2005).
40. Nikulshina, V., M. E. Gálvez, and A. Steinfeld, “Kinetic analysis of the carbonation
reactions for the capture of CO2 from air via the Ca(OH)2–CaCO3–CaO solar thermochemical cycle”, Chemical Engineering Journal, vol. 129, pp. 75-83, (2007).
41. Olajire, A. A., “A review of mineral carbonation technology in sequestration of CO2”, Journal of Petroleum Science and Engineering, vol. 109, pp. 364-392, (2013).
42. Pan, S. Y., E. E. Chang, and P. C. Chiang, “CO2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on Its Principles and Applications”, Aerosol and Air Quality Research, vol. 12, pp. 770-791, (2012).
43. Pasquier, L.-C., G. Mercier, J.-F. Blais, E. Cecchi, and S. Kentish, “Reaction Mechanism for the Aqueous-Phase Mineral Carbonation of Heat-Activated Serpentine at Low Temperatures and Pressures in Flue Gas Conditions”, Environmental Science & Technology, vol. 48, pp. 5163-5170, (2014).
44. Ryu, M. Y., K. S. You, J. W. Ahn, and H. Kim, “Effect of the pH and Basic Additives on the Precipitation of Calcium Carbonate during Carbonation Reaction”, Resources Processing, vol. 54, pp. 14-18, (2007).
45. Sanchez, F., C. Gervais, A. C. Garrabrants, R. Barna, and D. S. Kosson, “Leaching of inorganic contaminants from cement-based waste materials as a result of carbonation during intermittent wetting”, Waste Management, vol. 22, pp. 249-260, (2002).
46. Santos, R. M., M. Bodor, P. N. Dragomir, A. G. Vraciu, M. Vlad, and T. Van Gerven, “Magnesium chloride as a leaching and aragonite-promoting self-regenerative additive for the mineral carbonation of calcium-rich materials”, Minerals Engineering, vol. 59, pp. 71-81, (2014).
47. Santos, R. M., D. François, G. Mertens, J. Elsen, and T. Van Gerven, “Ultrasound-intensified mineral carbonation”, Applied Thermal Engineering, vol. 57, pp. 154-163, (2012).
48. Sawyer, C. N., P. L. McCarty, and G. F. Parkin, Chemistry for Environmental Engineering and Science, McGraw-Hill, New York, (2003).
49. Seifritz, W., “CO2 disposal by means of silicates”, Nature, vol. 345, pp. 486-486, (1990).
50. Sipilä, J., S. Teir, and R. Zevenhoven, “Carbon dioxide sequestration by mineral carbonation Literature Review update 2005-2007”, Åbo Akademi University Faculty of Technology Heat Engineering Laboratory, (2008).
51. Sorochkin, M. A., A. F. Shchrov, and I. A. Safonov, “Study of the possibility of using carbon dioxide for accelerating the hardening of products made from Portland
cement”, Applied Chemistry, vol. 48, p. 1211, (1975).
52. Stankiewicz, A. I., and J. A. Moulijn, “Process Intensification Transforming Chemical Engineering”, Chemical Engineering Progress, pp. 22-34, (2000).
53. Tai, C. Y., W. R. Chen, and S.-M. Shih, “Factors affecting wollastonite carbonation under CO2 supercritical conditions”, American Institute of Chemical Engineers Journal, vol. 52, pp. 292-299, (2006).
54. Teir, S., “Fixation of carbon dioxide by producing carbonates from minerals and steelmaking slags”, Department of Energy Technology, Helsinki University of Technology, Doctoral, Finland, (2008).
55. Tian, S., and J. Jiang, “Sequestration of flue gas CO2 by direct gas-solid carbonation of air pollution control system residues”, Environmental Science & Technology, vol. 46, pp. 13545-13551, (2012).
56. UNFCCC, “Adoption of the Paris Agreement. Proposal by the President”, Geneva United Nations Office, Switzerland, (2015).
57. Yu, J., and K. Wang, “Study on Characteristics of Steel Slag for CO2 Capture”, Energy & Fuels, vol. 25, pp. 5483-5492, (2011).
58. 刑金池,「電弧爐氧化碴資源化利用研究」,材料及資源工程系,國立台北科技大學,碩士,台北,(2004)。
59. 江奇成,「電弧爐煉鋼還原渣與鑄件廢料摻用於混凝土再生材之模式研究」,營建工程系,國立台灣科技大學,博士,台北,(2005)。
60. 余秉澤,「以還原碴廢棄材料捕捉二氧化碳之研究」,環境工程研究所,國立中央大學,碩士,中壢,(2014)。
61. 李宜樺,李鴻源,,彭成熹,詹淑然,顏振華,吳文龍,陳穩如,工業廢棄物清除及再利用實務輯,臺北市,行政院環境保護署,(2013)。
62. 林俊一,反應工程學,修訂六版,文京圖書,(2000)。
63. 張高僑,「鈣系爐渣封存二氧化碳行為之研究」,環境工程學系,國立成功大學,碩士,台南,(2008)。
64. 張聖雄,陳見財,陳良棟,“廢水生物處理程序常見問題實務探討」,工業污染防治,第97期, pp.69-87,(2006)。
65. 陳怡蒼,「轉爐石碳酸化之操作變數效應」,化學工程學研究所,國立臺灣大學,碩士,台北市,(2008)。
66. 陳建任,「台灣鋼鐵產業趨勢與鋼價展望」,鋼鐵產業發展趨勢及國際行銷策略研討會,(2011)。
67. 程士豪,模擬煙道氣進行轉爐石碳酸化之研究」,環境工程與科學系,輔英科技大學,碩士,高雄,(2008)。
68. 黃至弘,談駿嵩,「CCUS 技術發展」,碳捕存與再利用,(2014)。
69. 黃慶慶,鹼活化電弧爐還原碴製作混凝土可行性研究」,土木工程研究所,國立中央大學,碩士,中壢,(2008)。
70. 劉國忠,「煉鋼爐渣之資源化技術與未來推展方向」,環保月刊,第1卷第4期,pp. 114-136,(2001)。
71. 潘述元,「在超重力旋轉填充床中利用煉鋼爐石碳酸化反應進行二氧化碳捕捉」,環境工程學研究所,國立臺灣大學,碩士,台北,(2011)。
72. 蔡柏棋,徐登科,「台灣常用爐石與工程應用實務」,技師報,第938期,(2014)。
73. 蔣本基,張怡怡,「利用鹼性固體廢棄物進行二氧化碳封存及資源化技術評估」,(2007)。
74. 鄭旭翔,以醇胺水溶液搭配旋轉填充床捕獲二氧化碳化學工程學系,國立清華大學,博士,新竹市,(2012)。
75. 鍾岱均,蔣本基,陳劼立,潘述元,何長慶,侯智仁,「超重力碳酸化進行碳捕集及再利用:以電弧爐還原碴為例」,環工年會,空氣污染控制技術研討會,(2015)。
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2016-4-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明