博碩士論文 102326023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.231.228.109
姓名 葉威成(Wei-Cheng Ye)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱
(In Situ Measurements of CCN Activity and Aerosol Optical Properties at Biomass Burning Source and Receptor Regions)
相關論文
★ 熱昇華廢棄相紙資源化研究★ 地勤公司從業人員搬運作業肌肉骨骼傷害風險評估
★ 高階製程安全管理架構★ 以COMSOL Multiphysics模擬氣懸微粒於靜電集塵式細胞株暴露系統中之運動軌跡
★ 社區改造碳排放及減量計算分析與探討★ 中小型燃煤鍋爐粒狀污染物、硫氧化物及氮氧化物經串聯控制設備後之去除效率探討研究-以桃園市為例
★ 整合填充型水洗技術於潔淨室外氣空調箱 以去除酸鹼氣態分子污染物之研究★ 固定污染源揮發性有機物(VOCs)自廠係數建置-以某矽晶圓製造廠為例
★ 高層建築大樓室內空氣品質之探討-以某企業大樓為例★ 公路交通運輸對於山谷地形郊區空氣品質之影響
★ 以沸石轉輪焚化系統處理變壓器塗裝作業VOCs效率探討★ 以數值模擬分析狹縫型虛擬衝擊器之效能
★ 研究微粒帶電性質與呼吸毒性之關聯: 以小鼠暴露奈米黑碳微粒實驗為例★ 靜電集塵式ALI暴露系統之設計、開發與評估
★ 以石英晶體微天平量測細懸浮微粒PM2.5質量濃度之可行性探討★ 以HTDMA與HT DMA-APM系統探討無機鹽奈米微粒的吸溼行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 這篇研究的第一個部分包含2013、2014年在鹿林山背景站量測氣膠光學參數以及2013年3月在生質燃燒源區所進行一個月的量測。目的為探討2013、2014年鹿林山測站氣膠光學參數的變化以及研究經長程傳輸後的生質燃燒氣膠對鹿林山測站的光學性質有何影響。結果顯示,春季時,經由長程傳輸後的生質燃燒氣膠,對鹿林山背景站的氣膠光學性質有明顯的影響。散、吸光係數在春季時有最大值,分別為85.18 Mm-1和12.00 Mm-1m。而較低的單次散射反照率(SSA=0.87)以及較高的輻射效率(RFE=-18.61 Wm-2/AOD)都顯示,鹿林山測站因為受到春季生質燃燒的影響,含有較多的吸光物質,造成相對較強的輻射吸收能力。
而這篇研究的另一個主體則聚焦在生質燃燒源區的雲凝結核以及和黑碳的變化上。主要的目的為探討氣膠吸濕特性以及PM2.5和黑碳質量濃度在東南亞生質燃燒源區的變化。整個觀測可以分成兩個時段,其氣膠類型也有所不同。3/13~16為老化生質燃燒氣膠,3/17~19為新鮮生質燃燒氣膠。而老化生質燃燒氣膠的吸濕參數為0.08,新鮮生質燃燒氣膠則為0.05。老化生質燃燒氣膠的BC880nm/BC370nm為0.84,新鮮生質燃燒氣膠則為0.72。
摘要(英) The first part of this study included a 2-year observation of aerosol optical properties were investigated during 2013 to 2014 at Lulin atmospheric background station (LABS) which is located at downstream of Indochina and China. and a 1-month observation conducted at BB source region, Doi Ang Kang (DAK) during 2013 BASELInE campaign. The objectives in this part of study are to investigate the extensive and intensive optical properties of aerosol at LABS in 2013 and 2014 with ground-based measurements and to study the long-range transport of BB aerosol based on aerosol optical properties.The long range transport of BB aerosol significantly influence the optical properties observed in LABS during spring time. The intensive properties had maimum value in spring time which is 85.18 Mm-1 and 12.00 Mm-1 for scattering and absorption coefficient respectively. For extensive properties, the low single scattering albedo (SSA= 0.87) and high radiative forcing efficiency (RFE= -18.61 Wm-2/AOD) revealed the high content of absorbing material which were affected by the effect of BB in springtime.
The other part of this study focused on the cloud condensation nuclie (CCN) activity and black carbon (BC) at BB source region, DAK. The objectives in this part of study are to study CCN activity, PM2.5 and BC mass conc. in BB source region of Southeast Asia. The observation can be labeled as aged BB event (3/13~3/16) and fresh BB event (3/17~3/19). The aerosol hygroscopicity parameter were 0.08 for aged period and 0.05 for fresh period. The BC880nm/BC370nm was 0.84 and 0.72 for aged and fresh BB period respectively, suggesting the existence of larger scale of burning event or fresher BB aerosols were measured in 3/17~3/19.
關鍵字(中) ★ 生質燃燒氣膠
★ 雲凝結核
★ 氣膠光學性質
關鍵字(英) ★ biomass burning aerosol
★ CCN
★ aerosol optical properties
論文目次 Contents
Abstract V
Contents VII
List of Figures VIII
List of Tables XIII
Chapter 1. Characteristics of Aerosol Optical Properties at Lulin Atmospheric Background Station in Taiwan 1
1.1. Introduction 1
1.2. Methods 4
1.3. Results and Discussion 9
1.4. Conclusions 45
Chapter 2. Investigation of the CCN Activity and BC Mass Concentrations of Biomass Burning Aerosols during 2013 BASELInE Campaign 47
2.1. Introduction 47
2.2. Methods 49
2.3. Results and Discussion 55
2.4. Conclusions 78
Reference 81
Committee comments 87
參考文獻 Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M. (2014). Climate change 2013: The physical science basis. Cambridge University Press Cambridge, UK, and New York.
Dumka, U. C. and Kaskaoutis, D. G. (2014). In-situ measurements of aerosol properties and estimates of radiative forcing efficiency over Gangetic-Himalayan region during the GVAX field campaign. Atmos. Environ. 94: 96-105.
Andrews, E., Ogren, J. A., Bonasoni, P., Marinoni, A., Cuevas, E., Rodríguez, S., Sun, J. Y., Jaffe, D. A., Fischer, E. V., Baltensperger, U., Weingartner, E., Collaud Coen, M., Sharma, S., Macdonald, A. M., Leaitch, W. R., Lin, N.-H., Laj, P., Arsov, T., Kalapov, I., Jefferson, A. and Sheridan, P. (2011). Climatology of aerosol radiative properties in the free troposphere. Atmos. Res. 102: 365-393.
Kim, S.-W., Yoon, S.-C., Jefferson, A., Ogren, J. A., Dutton, E. G., Won, J.-G., Ghim, Y. S., Lee, B.-I. and Han, J.-S. (2005). Aerosol optical, chemical and physical properties at Gosan, Korea during Asian dust and pollution episodes in 2001. Atmos. Environ. 39: 39-50.
Bambha, R. P. and Michelsen, H. A. (2015). Effects of aggregate morphology and size on laser-induced incandescence and scattering from black carbon (mature soot). J. Aerosol Sci. 88: 159-181.
Zieger, P., Fierz-Schmidhauser, R., Weingartner, E. and Baltensperger, U. (2013). Effects of relative humidity on aerosol light scattering: results from different European sites. Atmos. Chem. Phys. 13: 10609-10631.
McMeeking, G. R., Morgan, W. T., Flynn, M., Highwood, E. J., Turnbull, K., Haywood, J. and Coe, H. (2011). Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom. Atmos. Chem. Phys. 11: 9037-9052.
Titos, G., Foyo‐Moreno, I., Lyamani, H., Querol, X., Alastuey, A. and Alados‐Arboledas, L. (2012). Optical properties and chemical composition of aerosol particles at an urban location: An estimation of the aerosol mass scattering and absorption efficiencies. J. Geophys. Res.-Atmos. 117.
Delene, D. J. and Ogren, J. A. (2002). Variability of aerosol optical properties at four North American surface monitoring sites. J. Atmos. Sci. 59: 1135-1150.
Ma, N., Zhao, C. S., Nowak, A., Müller, T., Pfeifer, S., Cheng, Y. F., Deng, Z. Z., Liu, P. F., Xu, W. Y. and Ran, L. (2011). Aerosol optical properties in the North China Plain during HaChi campaign: an in-situ optical closure study. Atmos. Chem. Phys. 11: 5959-5973.
Rizzo, L. V., Artaxo, P., Müller, T., Wiedensohler, A., Paixão, M., Cirino, G. G., Arana, A., Swietlicki, E., Roldin, P., Fors, E. O., Wiedemann, K. T., Leal, L. S. M. and Kulmala, M. (2013). Long term measurements of aerosol optical properties at a primary forest site in Amazonia. Atmos. Chem. Phys. 13: 2391-2413.
Aaltonen, V., Lihavainen, H., Kerminen, V.-M., Komppula, M., Hatakka, J., Eneroth, K., Kulmala, M. and Viisanen, Y. (2006). Measurements of optical properties of atmospheric aerosols in Northern Finland. Atmos. Chem. Phys. 6: 1155-1164.
Zhang, X.-Y., Gong, S. L., Zhao, T. L., Arimoto, R., Wang, Y. Q. and Zhou, Z. J. (2003). Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys. Res. Lett. 30.
Clarke, A. D., Shinozuka, Y., Kapustin, V. N., Howell, S., Huebert, B., Doherty, S., Anderson, T., Covert, D., Anderson, J., Hua, X., Moore II, K. G., McNaughton, C., Carmichael, G. and Weber, R. (2004). Size distributions and mixtures of dust and black carbon aerosol in Asian outflow: Physiochemistry and optical properties. J. Geophys. Res: Atmos. 109.
Doherty, S. J., Quinn, P. K., Jefferson, A., Carrico, C. M., Anderson, T. L. and Hegg, D. (2005). A comparison and summary of aerosol optical properties as observed in situ from aircraft, ship, and land during ACE‐Asia. J. Geophys. Res: Atmos. 110.
Lin, N.-H., Tsay, S.-C., Maring, H. B., Yen, M.-C., Sheu, G.-R., Wang, S.-H., Chi, K. H., Chuang, M.-T., Ou-Yang, C.-F. and Fu, J. S. (2013). An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmos. Environ. 78: 1-19.
Sheu, G.-R., Lin, N.-H., Wang, J.-L., Lee, C.-T., Ou Yang, C.-F. and Wang, S.-H. (2010). Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan. Atmos. Environ. 44: 2393-2400.
Wai, K. M., Lin, N. H., Wang, S. H. and Dokiya, Y. (2008a). Rainwater chemistry at a high‐altitude station, Mt. Lulin, Taiwan: Comparison with a background station, Mt. Fuji. Journal of Geophysical Research: Atmospheres (1984–2012) 113.
Sheu, G.-R., Lin, N.-H., Wang, J.-L. and Lee, C.-T. (2009). Lulin Atmospheric Background Station: a new high-elevation baseline station in Taiwan. エアロゾル研究 24: 84-89.
Dumka, U. C., Kaskaoutis, D. G., Srivastava, M. K. and Devara, P. C. S. (2015). Scattering and absorption properties of near-surface aerosol over Gangetic–Himalayan region: the role of boundary-layer dynamics and long-range transport. Atmospheric Chemistry and Physics 15: 1555-1572.
Fischer, E. V., Jaffe, D. A., Marley, N. A., Gaffney, J. S. and Marchany‐Rivera, A. (2010). Optical properties of aged Asian aerosols observed over the US Pacific Northwest. Journal of Geophysical Research: Atmospheres (1984–2012) 115.
Hand, J. L. and Malm, W. C. (2007). Review of aerosol mass scattering efficiencies from ground‐based measurements since 1990. J. Geophys. Res. 112.
Reid, J. S., Eck, T. F., Christopher, S. A., Koppmann, R., Dubovik, O., Eleuterio, D. P., Holben, B. N., Reid, E. A. and Zhang, J. (2005a). A review of biomass burning emissions part III: intensive optical properties of biomass burning particles. Atmospheric Chemistry and Physics 5: 827-849.
Pu, W., Zhao, X., Shi, X., Ma, Z., Zhang, X. and Yu, B. (2015). Impact of long-range transport on aerosol properties at a regional background station in Northern China. Atmos. Res. 153: 489-499.
Jing, J., Wu, Y., Tao, J., Che, H., Xia, X., Zhang, X., Yan, P., Zhao, D. and Zhang, L. (2015). Observation and analysis of near-surface atmospheric aerosol optical properties in urban Beijing. Particuology 18: 144-154.
Kaskaoutis, D. G., Kumar, S., Sharma, D., Singh, R. P., Kharol, S. K., Sharma, M., Singh, A. K., Singh, S., Singh, A. and Singh, D. (2014). Effects of crop residue burning on aerosol properties, plume characteristics, and long‐range transport over northern India. J. Geophys. Res.-Atmos. 119: 5424-5444.
Kirillova, E. N., Andersson, A., Sheesley, R. J., Kruså, M., Praveen, P. S., Budhavant, K., Safai, P. D., Rao, P. S. P. and Gustafsson, Ö. (2013). 13C‐and 14C‐based study of sources and atmospheric processing of water‐soluble organic carbon (WSOC) in South Asian aerosols. J. Geophys. Res.-Atmos. 118: 614-626.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B. and Koch, D. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres 118: 5380-5552.
Hatzianastassiou, N., Katsoulis, B. and Vardavas, I. (2004). Global distribution of aerosol direct radiative forcing in the ultraviolet and visible arising under clear skies. Tellus B 56: 51-71.
Seinfeld, J. H. and Pandis, S. N. (2012). Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
Collaud Coen, M., Weingartner, E., Nyeki, S., Cozic, J., Henning, S., Verheggen, B., Gehrig, R. and Baltensperger, U. (2007). Long‐term trend analysis of aerosol variables at the high‐alpine site Jungfraujoch. Journal of Geophysical Research: Atmospheres (1984–2012) 112.
Chen, S. C., Hsu, S. C., Tsai, C. J., Chou, C. K., Lin, N. H., Lee, C. T., Roam, G. D. and Pui, D. Y. H. (2013). Dynamic variations of ultrafine, fine and coarse particles at the Lu-Lin background site in East Asia. Atmospheric Environment 78: 154-162.
Russell, P. B., Bergstrom, R. W., Shinozuka, Y., Clarke, A. D., DeCarlo, P. F., Jimenez, J. L., Livingston, J. M., Redemann, J., Dubovik, O. and Strawa, A. (2010). Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition. Atmospheric Chemistry and Physics 10: 1155-1169.
Eck, T. F., Holben, B. N., Sinyuk, A., Pinker, R. T., Goloub, P., Chen, H., Chatenet, B., Li, Z., Singh, R. P. and Tripathi, S. N. (2010). Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures. Journal of Geophysical Research: Atmospheres (1984–2012) 115.
Valenzuela, A., Olmo, F. J., Lyamani, H., Antón, M., Titos, G., Cazorla, A. and Alados-Arboledas, L. (2015). Aerosol scattering and absorption Angström exponents as indicators of dust and dust-free days over Granada (Spain). Atmospheric Research 154: 1-13.
Salinas, S. V., Chew, B. N., Mohamad, M., Mahmud, M. and Liew, S. C. (2013). First measurements of aerosol optical depth and Angstrom exponent number from AERONET′s Kuching site. Atmospheric Environment 78: 231-241.
Toledano, C., Cachorro, V. E., Berjon, A., De Frutos, A. M., Sorribas, M., De la Morena, B. A. and Goloub, P. (2007). Aerosol optical depth and Ångström exponent climatology at El Arenosillo AERONET site (Huelva, Spain). Quarterly Journal of the Royal Meteorological Society 133: 795-807.
Haywood, J. M. and Shine, K. P. (1995). The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophysical Research Letters 22: 603-606.
van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco, C. and Villeneuve, P. J. (2010). Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environmental health perspectives 118: 847-855.
Huang, Y., Shen, H., Chen, H., Wang, R., Zhang, Y., Su, S., Chen, Y., Lin, N., Zhuo, S. and Zhong, Q. (2014). Quantification of Global Primary Emissions of PM2. 5, PM10, and TSP from Combustion and Industrial Process Sources. Environmental science & technology 48: 13834-13843.
Sandrini, S., Giulianelli, L., Decesari, S., Fuzzi, S., Cristofanelli, P., Marinoni, A., Bonasoni, P., Chiari, M., Calzolai, G. and Canepari, S. (2014). In situ physical and chemical characterisation of the Eyjafjallajökull aerosol plume in the free troposphere over Italy. Atmospheric Chemistry and Physics 14: 1075-1092.
Pandolfi, M., Ripoll, A., Querol, X. and Alastuey, A. (2014). Climatology of aerosol optical properties and black carbon mass absorption cross section at a remote high-altitude site in the western Mediterranean Basin. Atmos. Chem. Phys. 14: 6443-6460.
Laj, P., Klausen, J., Bilde, M., Plass-Duelmer, C., Pappalardo, G., Clerbaux, C., Baltensperger, U., Hjorth, J., Simpson, D. and Reimann, S. (2009). Measuring atmospheric composition change. Atmospheric Environment 43: 5351-5414.
Aiken, A. C., de Foy, B., Wiedinmyer, C., DeCarlo, P. F., Ulbrich, I. M., Wehrli, M. N., Szidat, S., Prevot, A. S. H., Noda, J., Wacker, L., Volkamer, R., Fortner, E., Wang, J., Laskin, A., Shutthanandan, V., Zheng, J., Zhang, R., Paredes-Miranda, G., Arnott, W. P., Molina, L. T., Sosa, G., Querol, X. and Jimenez, J. L. (2010). Mexico city aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) – Part 2: Analysis of the biomass burning contribution and the non-fossil carbon fraction. Atmos. Chem. Phys. 10: 5315-5341.
Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M. and Silva-Dias, M. A. F. (2004). Smoking rain clouds over the Amazon. science 303: 1337-1342.
Crutzen, P. J. and Andreae, M. O. (1990). Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science 250: 1669-1678.
Bates, T. S., Anderson, T. L., Baynard, T., Bond, T., Boucher, O., Carmichael, G., Clarke, A., Erlick, C., Guo, H. and Horowitz, L. (2006). Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling. Atmos. Chem. Phys. 6: 1657-1732.
Andreae, M. O. and Rosenfeld, D. (2008). Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Sci. Rev. 89: 13-41.
Pierce, J. R., Chen, K. and Adams, P. J. (2007). Contribution of primary carbonaceous aerosol to cloud condensation nuclei: processes and uncertainties evaluated with a global aerosol microphysics model. Atmos. Chem. Phys. 7: 5447-5466.
Spracklen, D. V., Carslaw, K. S., Pöschl, U., Rap, A. and Forster, P. M. (2011). Global cloud condensation nuclei influenced by carbonaceous combustion aerosol. Atmos. Chem. Phys. 11: 9067-9087.
Reutter, P., Su, H., Trentmann, J., Simmel, M., Rose, D., Gunthe, S. S., Wernli, H., Andreae, M. O. and Pöschl, U. (2009). Aerosol-and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN). Atmos. Chem. Phys. 9: 7067-7080.
Martin, S. T. (2000). Phase transitions of aqueous atmospheric particles. Chem. Rev. 100: 3403-3454.
Hallett, J., Hudson, J. G. and Rogers, C. F. (1989). Characterization of combustion aerosols for haze and cloud formation. Aerosol Sci. Tech. 10: 70-83.
Dinh, V. P., Lacaux, J. P. and Serpolay, R. in: N. Fukuta and P. E. Wagner (Eds.) Nucleation and Atmospheric Aerosols 1992, Proc. 13th Int. Nuc., New York, USA, 1992, Deepak New York, p. 173-176
Wardoyo, A. Y. P., Morawska, L., Ristovski, Z. D., Jamriska, M., Carr, S. and Johnson, G. (2007). Size distribution of particles emitted from grass fires in the Northern Territory, Australia. Atmos. Environ. 41: 8609-8619.
Reid, J. S., Koppmann, R., Eck, T. F. and Eleuterio, D. P. (2005b). A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 5: 799-825.
Carrico, C. M., Petters, M. D., Kreidenweis, S. M., Sullivan, A. P., McMeeking, G. R., Levin, E. J. T., Engling, G., Malm, W. C. and Collett Jr, J. L. (2010). Water uptake and chemical composition of fresh aerosols generated in open burning of biomass. Atmos. Chem. Phys. 10: 5165-5178.
Petters, M. D., Carrico, C. M., Kreidenweis, S. M., Prenni, A. J., DeMott, P. J., Collett, J. L. and Moosmueller, H. (2009). Cloud condensation nucleation activity of biomass burning aerosol. J. Geophys. Res.-Atmos. 114.
Lathem, T. L., Beyersdorf, A. J., Thornhill, K. L., Winstead, E. L., Cubison, M. J., Hecobian, A., Jimenez, J. L., Weber, R. J., Anderson, B. E. and Nenes, A. (2013). Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008. Atmos. Chem. Phys. 13: 2735-2756.
Pratt, K. A., Murphy, S. M., Subramanian, R., DeMott, P. J., Kok, G. L., Campos, T., Rogers, D. C., Prenni, A. J., Heymsfield, A. J. and Seinfeld, J. H. (2011). Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes. Atmos. Chem. Phys. 11: 12549-12565.
Engelhart, G. J., Hennigan, C. J., Miracolo, M. A., Robinson, A. L. and Pandis, S. N. (2012). Cloud condensation nuclei activity of fresh primary and aged biomass burning aerosol. Atmos. Chem. Phys. 12: 7285-7293.
Petters, M. D. and Kreidenweis, S. M. (2007). A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7: 1961-1971.
Rissler, J., Vestin, A., Swietlicki, E., Fisch, G., Zhou, J., Artaxo, P. and Andreae, M. O. (2006). Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia. Atmos. Chem. Phys. 6: 471-491.
Reid, J. S., Hobbs, P. V., Ferek, R. J., Blake, D. R., Martins, J. V., Dunlap, M. R. and Liousse, C. (1998). Physical, chemical, and optical properties of regional hazes dominated by smoke in Brazil. J. Geophys. Res.-Atmos. 103: 32059-32080.
Dusek, U., Frank, G. P., Hildebrandt, L., Curtius, J., Schneider, J., Walter, S., Chand, D., Drewnick, F., Hings, S. and Jung, D. (2006). Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science 312: 1375-1378.
Jeong, C.-H., Hopke, P. K., Kim, E. and Lee, D.-W. (2004). The comparison between thermal-optical transmittance elemental carbon and Aethalometer black carbon measured at multiple monitoring sites. Atmos. Environ. 38: 5193-5204.
Park, K., Chow, J. C., Watson, J. G., Trimble, D. L., Doraiswamy, P., Park, K., Arnott, W. P., Stroud, K. R., Bowers, K. and Bode, R. (2006). Comparison of continuous and filter-based carbon measurements at the Fresno Supersite. J. Air Waste Manage. 56: 474-491.
Sandradewi, J., Prévôt, A. S. H., Alfarra, M. R., Szidat, S., Wehrli, M. N., Ruff, M., Weimer, S., Lanz, V. A., Weingartner, E. and Perron, N. (2008). Comparison of several wood smoke markers and source apportionment methods for wood burning particulate mass. Atmos. Chem. Phys. Discuss. 8: 8091-8118.
Wang, Y., Hopke, P. K., Rattigan, O. V. and Zhu, Y. (2011). Characterization of ambient black carbon and wood burning particles in two urban areas. J. Environ. Monitor. 13: 1919-1926.
Kumar, M., Lipi, K., Sureshbabu, S. and Mahanti, N. C. (2011). Aerosol properties over Ranchi measured from aethalometer. Atmos. and Climate Sci. 1: 91.
Yu, G.-H., Cho, S.-Y., Bae, M.-S. and Park, S.-S. (2014). Difference in production routes of water-soluble organic carbon in PM 2.5 observed during non-biomass and biomass burning periods in Gwangju, Korea. Env. Sci. Process. Impact 16: 1726-1736.
Hung, H.-M., Lu, W.-J., Chen, W.-N., Chang, C.-C., Chou, C.-K. and Lin, P.-H. (2014). Enhancement of the hygroscopicity parameter kappa of rural aerosols in northern Taiwan by anthropogenic emissions. Atmos. Environ. 84: 78-87.
Gunthe, S. S., King, S. M., Rose, D., Chen, Q., Roldin, P., Farmer, D. K., Jimenez, J. L., Artaxo, P., Andreae, M. O. and Martin, S. T. (2009). Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity. Atmos. Chem. Phys. 9: 7551-7575.
Rose, D., Nowak, A., Achtert, P., Wiedensohler, A., Hu, M., Shao, M., Zhang, Y., Andreae, M. O. and Pöschl, U. (2010). Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China–Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity. Atmos. Chem. Phys. 10: 3365-3383.
Carrico, C. M., Kreidenweis, S. M., Malm, W. C., Day, D. E., Lee, T., Carrillo, J., McMeeking, G. R. and Collett, J. L. (2005). Hygroscopic growth behavior of a carbon-dominated aerosol in Yosemite National Park. Atmos. Environ. 39: 1393-1404.
Dusek, U., Frank, G. P., Massling, A., Zeromskiene, K., Iinuma, Y., Schmid, O., Helas, G., Hennig, T., Wiedensohler, A. and Andreae, M. O. (2011). Water uptake by biomass burning aerosol at sub-and supersaturated conditions: closure studies and implications for the role of organics. Atmos. Chem. Phys. 11: 9519-9532.
Rissler, J., Swietlicki, E., Zhou, J., Roberts, G., Andreae, M. O., Gatti, L. V. and Artaxo, P. (2004). Physical properties of the sub-micrometer aerosol over the Amazon rain forest during the wet-to-dry season transition-comparison of modeled and measured CCN concentrations. Atmos. Chem. Phys. 4: 2119-2143.
Chen, T.-C., Yen, M.-C., Huang, W.-R. and Gallus Jr, W. A. (2002). An East Asian cold surge: case study. Mon. Weather Rev. 130: 2271-2290.
Wai, K. M., Lin, N. H., Wang, S. H. and Dokiya, Y. (2008b). Rainwater chemistry at a high‐altitude station, Mt. Lulin, Taiwan: Comparison with a background station, Mt. Fuji. J. Geophys. Res.-Atmos. 113.
Ou Yang, C.-F., Lin, N.-H., Sheu, G.-R., Lee, C.-T. and Wang, J.-L. (2012). Seasonal and diurnal variations of ozone at a high-altitude mountain baseline station in East Asia. Atmos. Environ. 46: 279-288.
指導教授 蕭大智(Ta-Chih Hsiao) 審核日期 2015-10-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明