博碩士論文 102326028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.238.184.78
姓名 莊仲霆(Chung-ting Chuang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2015年中南半島近生質燃燒源與煙團傳輸氣膠特姓
(Aerosol Characteristics of Near-source Biomass Burning in Indochina and in Long-range Transported Plume in 2015)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 每年3月至4月中南半島北部山區會發生大規模生質燃燒,燃燒煙團上升到高海拔大氣層後,隨著盛行西風傳輸至東亞,受影響地理範圍很大;當傳輸煙團與雲層交會,將影響雲滴輻射收支,對氣候變遷影響重大。
本文於2015年3~4月泰國安康山進行密集觀測,PM2.5和PM10質量濃度分別為88.7±36.1 和112.0±39.0 µg m-3,PM2.5占PM10質量濃度的79%, PM2.5最重要化學成分類別為有機碳(OC),占PM2.5質量濃度37.2%,碳成分中OC3和EC1-OP分別占OC和元素碳(EC)的34.2%與93%,可視為生質燃燒指標物種;OC有高達68.9%為水可溶有機碳(WSOC),當這些氣膠進入雲層,將改變雲滴化學性質,因而影響雲滴輻射收支;在近生質燃燒污染源區,左旋葡聚糖(Levoglucosan)有突出的占比。本文探討氣膠化學成分比值應用,發現char-EC/soot-EC比OC/EC更能判定生質燃燒影響以及燃燒程度;使用Levoglucosan/Mannosan比值,可推論中南半島燃燒材質為軟木。
相同期間鹿林山觀測PM2.5和PM10質量濃度分別為21.1±9.6 和25.1±10.9 µg m-3,PM2.5占PM10質量濃度的84.2%。nss-SO42-和OC分別占PM2.5質量濃度的14.2和24.0%,碳成分中OC3和EC1-OP分別占OC和元素碳(EC)的36.5%與77.0%。在非生質燃燒期間,PM2.5最重要成分是nss-SO42-,占PM2.5質量濃度的24.8%,OC占PM2.5質量濃度22.8 %,OC仍然是以OC3占比最高(30.2%),EC則是以EC2占比(68.0%)最高,顯示非生質燃燒期間,重要氣膠成分和生質燃燒期間稍有不同。另外,利用成分比值推估鹿林山在非生質燃燒期間受汽、機車或燃煤影響大,這指出了背景大氣氣膠主要污染源。在其他物種方面,nss-K+、NO3-、單醣無水化合物、二元酸及其鹽類濃度在生質燃燒影響期間相較於非生質燃燒期間濃度凸顯,可視為生質燃燒指標物。
檢視近生質燃燒源與經長程傳輸煙團氣膠成分質量濃度占比,以nss-K+最為穩定,在PM2.5占比都是2%,本文以Modification Factor (MF)判別氣膠成分在長程傳輸後的增益或衰減,發現nss-SO42-在傳輸過程增益最大,顯示傳輸過程中有既成的nss-SO42-氣膠加入或有前驅氣體轉化現象的發生,單醣無水化合物在傳輸過程衰減最為嚴重,表示長時間在大氣停留,單醣無水化合物可能會漸漸消失。
大氣氣膠採樣影響因素很多,本文發現近生質燃燒源採樣過程中, OC1碳成分量測受到石英濾紙吸附揮發性有機氣體的干擾最大,在PM2.5小於77 µg m-3時差異顯著。生質燃燒煙團經傳輸後以一張、兩張或三張石英濾紙採樣,OC1都有顯著性的差異。在水可溶無機離子方面,Cl-揮發影響比例最高,近生質燃燒源和生質燃燒煙團傳輸後,修正後和未修正Cl-濃度分別為3倍及2.2倍。
以PMF解析中南半島污染來源共可得到4類,有72%氣膠受到生質燃燒影響,大致上與逆推軌跡來向分類具有一致性,但人為源污染排放及海鹽影響仍有其影響;以PMF解析鹿林山污染來源共可得到6類,有77.8%氣膠受到生質燃燒影響,確認生質燃燒煙團長程傳輸的現象。
摘要(英)

Every spring, biomass burning (BB) occurs extensively in the mountain area of northern Indochina. The plume produced from BB is uplifted to the elevated atmosphere and transported by prevailing westerly from Indochina to East Asia. As the BB plume distributes spatially, it will affect solar radiation budget when mixing with cloud layers during transport and thus resulting in an effect on climate change in the region.
In this study, atmospheric aerosol was observed intensively at Mt. Doi AnKhang (DAK) in Chiang Mai, Thailand from March to April 2015. During the observation period, PM2.5 and PM10 mass levels were averaged at 88.7±36.1 and 112.0±39.0 µg m-3, respectively. The fraction of PM2.5 over PM10 was 79%. The most important PM2.5 component was organic carbon (OC) with 37.2% of the collected PM2.5 mass. The mass fraction of OC3 in OC and EC1-OP in elemental carbon (EC) were 34.2% and 93%, respectively. Therefore, OC3 and EC1-OP can be considered as BB tracers. In addition, 68.9% of OC was water-soluble (WSOC). This implies a change of chemical properties in cloud droplets and the subsequent solar radiation extinction when the transported aerosol entering cloud layers. Levoglucosan is predominant in anhydrosugars in the near-source BB region. The ratio of chemical components of char-EC/soot-EC was found better than OC/EC in assessing BB influence and the degree of burning in this study. Moreover, the ratio of levoglucosan/mannosan was 13.3, which suggested the burning material was soft wood at the DAK site.
During the same observation period, PM2.5 and PM10 mass levels were averaged at 21.1±9.6 and 25.1±10.9 µg m-3, respectively, at Mt. Lulin. The mass fraction of PM2.5 in PM10 was 84.2%. Meanwhile, nss-SO42- and OC were the two most important PM2.5 components with the mass fractions of 14.2% and 24.0%, respectively. Moreover, the mass fraction of OC3 in OC and EC1-OP in EC were 36.5% and 77.0%, respectively. During the non-biomass burning (NBB) period, nss-SO42- was the most important component with the mass fraction of 24.8% in PM2.5. The mass fraction of OC in PM2.5 was 22.8%. OC3 was still the highest component in OC. However, EC2 became the highest component in EC. The changes in major components of PM2.5 and EC indicate the modification of contributing sources in PM2.5 during long-range transport (LRT). In addition, the ratios of PM2.5 components helped to infer that vehicle emissions and coal burning were the two major source types at Mt. Lulin during the NBB period. Since nss-K+, NO3-, levoglucosan, and di-acids and their salts were enhanced at the downwind Mt. Lulin site compared between the BB and NBB periods, they can be considered as tracers for transported BB plume.
By inspecting all PM2.5 component fractions, nss-K+ was found a stable component with the mass fraction of 2% in PM2.5 in the upwind and downwind sites. A Modification Factor (MF) was adopted to determine enhancement or degradation during LRT. The results showed that nss-SO42- was enhanced mostly indicating nss-SO42- was either enhanced by joining the existing nss-SO42- aerosol or converting from its precursor gas in the BB plume during LRT. The degradation of levoglucosan was the greatest which implies its disappearance in the atmosphere for staying a long time.
Given the fact that the quartz fiber filters used in collecting PM2.5 carbonaceous components will adsorb volatile organic compounds. OC1 of carbonaceous components was found interfered mostly in this study. The deviations of interference were significant when PM2.5 mass concentration was lower than 77 µg m-3. Even in the transported BB plume, OC1 showed significant deviation when compared two or three filters in series used in aerosol collection with one filter. In water soluble-inorganic ions, Cl- was the one with greatest volatility during collection. The corrected over non-corrected ratios of Cl- in the near-BB sources and transported BB plume were 3 and 2.2 folds, respectively.
Four source types were resolved from near-source BB aerosol using Positive Matrix Factorization (PMF). Seventy two percent of PM2.5 mass concentrations were associated with BB at Mt. DAK. The results are consistent with the classification of backward trajectory analysis. Nonetheless, anthropogenic and sea salt still show their influences even in the near-source BB area. Six source types were resolved from PMF with 77.8% of PM2.5 mass concentrations with BB origin at Mt. Lulin. It confirms the fact of LRT of BB plume.
關鍵字(中) ★ 鹿林山
★ 泰國清邁
★ 近生質燃燒污染源氣膠
★ 長程傳輸氣膠
★ 生質燃燒氣膠指標
關鍵字(英) ★ Mt. Lulin
★ Chiang Mai
★ Thailand
★ Near-sources biomass burning aerosols
★ Long-range transport aerosol
★ Biomass-burning aerosol tracers
論文目次

目錄
摘要 I
Abstract III
致謝 VI
目錄 VII
圖目錄 XI
表目錄 XVI
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1生質燃燒 3
2.1.1 東南亞生質燃燒 3
2.1.2 東南亞生質燃燒上風處到下風處的傳輸 5
2.2 生質燃燒氣膠化學特性 7
2.2.1 氣膠碳成分 7
2.2.1 氣膠水溶性無機離子 11
2.2.3 氣膠單醣無水化合物 14
2.2.4 氣膠二元酸 17
2.2.5 似腐植質(HULIS)氣膠 20
2.3 濾紙使用的誤差 22
2.3.1 有機碳濾紙使用誤差 22
2.3.2 水可溶無機離子濾紙使用誤差 25
2.4 生質燃燒成分比例變化 26
2.4.1 碳成分 26
2.4.2 水溶性無機離子 30
2.4.2 單醣無水化合物 31
2.5 受體模式PMF應用 32
第三章 研究方法 35
3.1 研究架構 35
3.2 觀測地點與週期 37
3.2.1 台灣鹿林山空氣品質背景監測站(Lulin Atmospheric Background Station,LABS) 37
3.2.2 台灣鹿林山觀測期間逆推軌跡分類 39
3.2.3 泰國安康山採樣點 43
3.2.4 泰國安康山觀測期間逆推軌跡分類 45
3.3 手動採樣儀器 48
3.3.1 R&P Model 3500自組式蜂巢式套管化學採樣器 48
3.3.2 高量採樣器 50
3.4 採樣濾紙選擇與前處理程序 52
3.4.1 儀器與濾紙配置 52
3.4.2 濾紙前處理 55
3.4.3 樣本運送與保存 56
3.5 樣本分析方法 57
3.5.1 樣本質量濃度秤重 57
3.5.2 氣膠碳成分分析 58
3.5.3氣膠水溶性離子分析 62
3.5.4氣膠水可溶有機碳分析 65
3.5.5氣膠單醣無水化合物 67
3.5.6氣膠二元酸分析 69
3.5.7 氣膠腐植質分析 70
3.6 氣膠水溶性離子非海洋來源 73
3.7 判別生質燃燒發生的方法 74
3.7.1 美國太空總署(NASA)自然災害網 74
3.7.2 氣流軌跡模式(NOAA HYSPLIT) 75
3.7.2 Seven-SEAS資料庫 75
3.8正矩陣因子法Positive Matrix Factorization (PMF) 76
3.8.1 PMF模式介紹 76
3.8.2 PMF預處理程序 77
3.8.3 EPA PMF v3.0.2.1軟體操作介紹 79
第四章 結果與討論 84
4.1 2015年泰國清邁PM2.5氣膠成份特性 84
4.1.1 PM2.5與PM10氣膠質量濃度 84
4.1.2 PM2.5氣膠碳成分 89
4.1.3 PM2.5氣膠水可溶無機離子 94
4.1.4 PM2.5氣膠有機物 97
4.2 2015年台灣鹿林山PM2.5氣膠成分特性 103
4.2.1 PM2.5與PM10氣膠質量濃度 103
4.2.2 PM2.5氣膠碳成分 105
4.2.3 PM2.5氣膠水可溶無機離子 108
4.2.4 PM2.5氣膠有機物 111
4.3 PM2.5近生質燃燒與經傳輸後氣膠差異與比值特性 116
4.3.1 泰國安康山與台灣鹿林山PM2.5氣膠成份差異 116
4.3.2 PM2.5氣膠化學成分比值應用 120
4.4 PM2.5生質燃燒氣膠揮發修正 133
4.4.1 以兩張濾紙修正吸附及揮發有機物 133
4.4.2 以三張濾紙修正吸附及揮發有機物 137
4.4.3 修正前、後水溶性無機鹽揮發比較 141
4.5 PMF解析PM2.5生質燃燒氣膠污染源 147
4.5.1 近生質燃燒源區PM2.5污染來源類型解析 147
4.5.2 生質燃燒源區PMF污染來源與軌跡來向分類比較 154
4.5.3 經傳輸後生質燃燒源來源類型解析命名 159
4.5.4 生質燃燒經傳輸後PMF污染來源與軌跡來向分類比較 167
第五章 結論 171
第六章 參考文獻 175
附錄一 鹿林山逆推軌跡 185
附錄二 泰國安康山逆推軌跡 198
附錄三 口試委員意見回復 211
參考文獻

Aggarwal, S.G., Kawamura, K., 2008. Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: Implications for photochemical aging during long‐range atmospheric transport. Journal of Geophysical Research: Atmospheres (1984–2012) 113.
Alahmr, F.O.M., Othman, M., Wahid, N.B.A., Halim, A.A., Latif, M.T., 2012. Compositions of dust fall around semi-urban areas in Malaysia. Aerosol Air Qual Res 12, 629-642.
Andreae, M.O., 1983. Soot carbon and excess fine potassium: long-range transport of combustion-derived aerosols. Science 220, 1148-1151.
Bao, L., Sekiguchi, K., Wang, Q., Sakamoto, K., 2009. Comparison of water-soluble organic components in size-segregated particles between a roadside and a suburban site in Saitama, Japan. Aerosol and Air Quality Resarch 9, 412-420.
Behera, S.N., Sharma, M., 2015. Spatial and seasonal variations of atmospheric particulate carbon fractions and identification of secondary sources at urban sites in North India. Environmental Science and Pollution Research 22, 13464-13476.
Caseiro, A., Bauer, H., Schmidl, C., Pio, C.A., Puxbaum, H., 2009. Wood burning impact on PM10 in three Austrian regions. Atmospheric Environment 43, 2186-2195.
Cavalli, F., Facchini, M., Decesari, S., Mircea, M., Emblico, L., Fuzzi, S., Ceburnis, D., Yoon, Y., O′Dowd, C., Putaud, J.P., 2004. Advances in characterization of size‐resolved organic matter in marine aerosol over the North Atlantic. Journal of Geophysical Research: Atmospheres (1984–2012) 109.
Chen, L.-W.A., Moosmüller, H., Arnott, W.P., Chow, J.C., Watson, J.G., Susott, R.A., Babbitt, R.E., Wold, C.E., Lincoln, E.N., Hao, W.M., 2007. Emissions from laboratory combustion of wildland fuels: Emission factors and source profiles. Environmental science & technology 41, 4317-4325.
Cheng, Y., Duan, F.-k., He, K.-b., Du, Z.-y., Zheng, M., Ma, Y.-l., 2012. Sampling artifacts of organic and inorganic aerosol: Implications for the speciation measurement of particulate matter. Atmospheric Environment 55, 229-233.
Cheng, Y., Engling, G., He, K.B., Duan, F.K., Ma, Y.L., Du, Z.Y., Liu, J.M., Zheng, M., Weber, R.J., 2013. Biomass burning contribution to Beijing aerosol. Atmos. Chem. Phys. 13, 7765-7781.
Cheng, Y., He, K.-b., 2015. Uncertainties in observational data on organic aerosol: An annual perspective of sampling artifacts in Beijing, China. Environmental Pollution 206, 113-121.
Chow, J.C., Watson, J.G., Chen, L.W.A., Rice, J., Frank, N.H., 2010. Quantification of PM2.5 organic carbon sampling artifacts in US networks. Atmos. Chem. Phys. 10, 5223-5239.
Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl, S.D., Engelbrecht, J.P., Green, M.C., 2004. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere 54, 185-208.
Chow, J.C., Watson, J.G., Lowenthal, D.H., Magliano, K.L., 2005. Loss of PM2. 5 nitrate from filter samples in central California. Journal of the Air & Waste Management Association 55, 1158-1168.
Chow, J.C., Watson, J.G., Lowenthal, D.H., Magliano, K.L., 2008. Size-resolved aerosol chemical concentrations at rural and urban sites in Central California, USA. Atmospheric Research 90, 243-252.
Chow, J.C., Watson, J.G., Pritchett, L.C., Pierson, W.R., Frazier, C.A., Purcell, R.G., 1993. The dri thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. Air quality studies. Atmospheric Environment. Part A. General Topics 27, 1185-1201.
Chuang, M.-T., Fu, J.S., Lin, N.-H., Lee, C.-T., Gao, Y., Wang, S.-H., Sheu, G.-R., Hsiao, T.-C., Wang, J.-L., Yen, M.-C., 2015. Simulating the transport and chemical evolution of biomass burning pollutants originating from Southeast Asia during 7-SEAS/2010 Dongsha experiment. Atmospheric Environment 112, 294-305.
Chuang, M.-T., Lee, C.-T., Chou, C.C.K., Lin, N.-H., Sheu, G.-R., Wang, J.-L., Chang, S.-C., Wang, S.-H., Chi, K.H., Young, C.-Y., Huang, H., Chen, H.-W., Weng, G.-H., Lai, S.-Y., Hsu, S.-P., Chang, Y.-J., Chang, J.-H., Wu, X.-C., 2014. Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: Long-term observation at Mt. Lulin. Atmospheric Environment 89, 507-516.
Duan, F., Liu, X., Yu, T., Cachier, H., 2004. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmospheric Environment 38, 1275-1282.
Duarte, R.M., Santos, E.B., Pio, C.A., Duarte, A.C., 2007. Comparison of structural features of water-soluble organic matter from atmospheric aerosols with those of aquatic humic substances. Atmospheric Environment 41, 8100-8113.
Elvidge, C., Baugh, K.E., 1995. Survey of fires in Southeast Asia and India during 1987. DTIC Document.
Falkovich, A.H., Graber, E.R., Schkolnik, G., Rudich, Y., Maenhaut, W., Artaxo, P., 2005. Low molecular weight organic acids in aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods. Atmos. Chem. Phys. 5, 781-797.
Fine, P.M., Cass, G.R., Simoneit, B.R.T., 2002. Chemical Characterization of Fine Particle Emissions from the Fireplace Combustion of Woods Grown in the Southern United States. Environmental Science & Technology 36, 1442-1451.
Fraser, M.P., Lakshmanan, K., 2000. Using Levoglucosan as a Molecular Marker for the Long-Range Transport of Biomass Combustion Aerosols. Environmental Science & Technology 34, 4560-4564.
Fujii, Y., Iriana, W., Oda, M., Puriwigati, A., Tohno, S., Lestari, P., Mizohata, A., Huboyo, H.S., 2014. Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatra, Indonesia. Atmospheric Environment 87, 164-169.
Fujimori, T., Takigami, H., Takaoka, M., 2013. Organochlorines in surface soil at electronic-waste wire burning sites and metal contribution evaluated using quantitative X-ray speciation, Journal of Physics: Conference Series. IOP Publishing, p. 012094.
Gao, S., Hegg, D.A., Hobbs, P.V., Kirchstetter, T.W., Magi, B.I., Sadilek, M., 2003. Water‐soluble organic components in aerosols associated with savanna fires in southern Africa: Identification, evolution, and distribution. Journal of Geophysical Research: Atmospheres (1984–2012) 108.
Gullett, B.K., Lemieux, P.M., Lutes, C.C., Winterrowd, C.K., Winters, D.L., 2001. Emissions of PCDD/F from uncontrolled, domestic waste burning. Chemosphere 43, 721-725.
Gustafsson, Ö., Kruså, M., Zencak, Z., Sheesley, R.J., Granat, L., Engström, E., Praveen, P., Rao, P., Leck, C., Rodhe, H., 2009. Brown clouds over South Asia: biomass or fossil fuel combustion? Science 323, 495-498.
Hatakeyama, S., Ohno, M., Weng, J., Takagi, H., Akimoto, H., 1987. Mechanism for the formation of gaseous and particulate products from ozone-cycloalkene reactions in air. Environmental Science & Technology 21, 52-57.
Ho, K.F., Lee, S.C., Cao, J.J., Kawamura, K., Watanabe, T., Cheng, Y., Chow, J.C., 2006. Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong. Atmospheric Environment 40, 3030-3040.
Holmes, B.J., Petrucci, G.A., 2006. Water-Soluble Oligomer Formation from Acid-Catalyzed Reactions of Levoglucosan in Proxies of Atmospheric Aqueous Aerosols. Environmental Science & Technology 40, 4983-4989.
Huntzicker, J.J., Johnson, R.L., Shah, J.J., Cary, R.A., 1982. Analysis of Organic and Elemental Carbon in Ambient Aerosols by a Thermal-Optical Method, in: Wolff, G., Klimisch, R. (Eds.), Particulate Carbon. Springer US, pp. 79-88.
Jeong, C.-H., Evans, G.J., Dann, T., Graham, M., Herod, D., Dabek-Zlotorzynska, E., Mathieu, D., Ding, L., Wang, D., 2008. Influence of biomass burning on wintertime fine particulate matter: Source contribution at a valley site in rural British Columbia. Atmospheric Environment 42, 3684-3699.
Kawamura, K., Ikushima, K., 1993. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environmental Science & Technology 27, 2227-2235.
Kawamura, K., Sakaguchi, F., 1999. Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. Journal of Geophysical Research: Atmospheres (1984–2012) 104, 3501-3509.
Kim, K.H., Sekiguchi, K., Kudo, S., Sakamoto, K., 2011. Characteristics of Atmospheric Elemental Carbon(Char and Soot) in Ultrafine and Fine Particles in a Roadside Environment, Japan. Aerosol and Air Quality Resarch 11, 1-12.
Krivácsy, Z., Hoffer, A., Sárvári, Z., Temesi, D., Baltensperger, U., Nyeki, S., Weingartner, E., Kleefeld, S., Jennings, S.G., 2001. Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites. Atmospheric Environment 35, 6231-6244.
Krivácsy, Z., Kiss, G., Ceburnis, D., Jennings, G., Maenhaut, W., Salma, I., Shooter, D., 2008. Study of water-soluble atmospheric humic matter in urban and marine environments. Atmospheric Research 87, 1-12.
Kundu, S., Kawamura, K., Andreae, T., Hoffer, A., Andreae, M., 2010. Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers. Atmospheric Chemistry and Physics 10, 2209-2225.
Lai, C., Liu, Y., Ma, J., Ma, Q., He, H., 2014. Degradation kinetics of levoglucosan initiated by hydroxyl radical under different environmental conditions. Atmospheric Environment 91, 32-39.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., 2011. The enhancement of PM 2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric Environment 45, 5784-5794.
Lin, L.-F., Lee, W.-J., Li, H.-W., Wang, M.-S., Chang-Chien, G.-P., 2007. Characterization and inventory of PCDD/F emissions from coal-fired power plants and other sources in Taiwan. Chemosphere 68, 1642-1649.
Miyazaki, Y., Kondo, Y., Han, S., Koike, M., Kodama, D., Komazaki, Y., Tanimoto, H., Matsueda, H., 2007. Chemical characteristics of water‐soluble organic carbon in the Asian outflow. Journal of Geophysical Research: Atmospheres 112.
Mochida, M., Kawamura, K., Fu, P., Takemura, T., 2010. Seasonal variation of levoglucosan in aerosols over the western North Pacific and its assessment as a biomass-burning tracer. Atmospheric Environment 44, 3511-3518.
Pio, C., Cerqueira, M., Harrison, R.M., Nunes, T., Mirante, F., Alves, C., Oliveira, C., Sanchez de la Campa, A., Artíñano, B., Matos, M., 2011. OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon. Atmospheric Environment 45, 6121-6132.
Pio, C.A., Legrand, M., Oliveira, T., Afonso, J., Santos, C., Caseiro, A., Fialho, P., Barata, F., Puxbaum, H., Sanchez-Ochoa, A., Kasper-Giebl, A., Gelencsér, A., Preunkert, S., Schock, M., 2007. Climatology of aerosol composition (organic versus inorganic) at nonurban sites on a west-east transect across Europe. Journal of Geophysical Research: Atmospheres 112, D23S02.
Pope, C., Byambadorj, B., Hill, C., Lum, E., Nield, B., 2014. Prototype Consequence Modeling Tool Based Upon the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Software.
Puxbaum, H., Caseiro, A., Sánchez‐Ochoa, A., Kasper‐Giebl, A., Claeys, M., Gelencsér, A., Legrand, M., Preunkert, S., Pio, C., 2007. Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background. Journal of Geophysical Research: Atmospheres (1984–2012) 112.
Radke, L.F., Hegg, D.A., Hobbs, P.V., Nance, J.D., Lyons, J.H., Laursen, K.K., Weiss, R.E., Riggan, P.J., Ward, D.E., 1991. Particulate and trace gas emissions from large biomass fires in North America. Global biomass burning: Atmospheric, climatic, and biospheric implications, 209-224.
Ram, K., Sarin, M., Tripathi, S., 2012a. Temporal trends in atmospheric PM2. 5, PM10, elemental carbon, organic carbon, water-soluble organic carbon, and optical properties: impact of biomass burning emissions in the Indo-Gangetic Plain. Environmental science & technology 46, 686-695.
Ram, K., Sarin, M.M., 2010. Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over Northern India. Journal of Aerosol Science 41, 88-98.
Ram, K., Sarin, M.M., 2011. Day–night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: Implications to secondary aerosol formation. Atmospheric Environment 45, 460-468.
Ram, K., Sarin, M.M., Tripathi, S.N., 2012b. Temporal Trends in Atmospheric PM2.5, PM10, Elemental Carbon, Organic Carbon, Water-Soluble Organic Carbon, and Optical Properties: Impact of Biomass Burning Emissions in The Indo-Gangetic Plain. Environmental Science & Technology 46, 686-695.
Rastogi, N., Singh, A., Sarin, M.M., Singh, D., Temporal variability of primary and secondary aerosols over northern India: Impact of biomass burning emissions. Atmospheric Environment.
Saarikoski, S., Timonen, H., Saarnio, K., Aurela, M., Järvi, L., Keronen, P., Kerminen, V., Hillamo, R., 2008. Sources of organic carbon in fine particulate matter in northern European urban air. Atmos. Chem. Phys 8, 6281-6295.
Samburova, V., Szidat, S., Hueglin, C., Fisseha, R., Baltensperger, U., Zenobi, R., Kalberer, M., 2005. Seasonal variation of high‐molecular‐weight compounds in the water‐soluble fraction of organic urban aerosols. Journal of Geophysical Research: Atmospheres (1984–2012) 110.
Sarigiannis, D.Α., Karakitsios, S.P., Kermenidou, M.V., 2015. Health impact and monetary cost of exposure to particulate matter emitted from biomass burning in large cities. Science of The Total Environment 524–525, 319-330.
Saxena, P., Hildemann, L.M., 1996. Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds. Journal of atmospheric chemistry 24, 57-109.
Schichtel, B.A., Malm, W.C., Bench, G., Fallon, S., McDade, C.E., Chow, J.C., Watson, J.G., 2008. Fossil and contemporary fine particulate carbon fractions at 12 rural and urban sites in the United States. Journal of Geophysical Research: Atmospheres (1984–2012) 113.
Schkolnik, G., Falkovich, A.H., Rudich, Y., Maenhaut, W., Artaxo, P., 2005. New Analytical Method for the Determination of Levoglucosan, Polyhydroxy Compounds, and 2-Methylerythritol and Its Application to Smoke and Rainwater Samples. Environmental Science & Technology 39, 2744-2752.
Sillanpää, M., Saarikoski, S., Hillamo, R., Pennanen, A., Makkonen, U., Spolnik, Z., Van Grieken, R., Koskentalo, T., Salonen, R.O., 2005. Chemical composition, mass size distribution and source analysis of long-range transported wildfire smokes in Helsinki. Science of The Total Environment 350, 119-135.
Simoneit, B.R.T., Elias, V.O., 2000. Organic tracers from biomass burning in atmospheric particulate matter over the ocean. Marine Chemistry 69, 301-312.
Song, Y., Zhang, Y., Xie, S., Zeng, L., Zheng, M., Salmon, L.G., Shao, M., Slanina, S., 2006. Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmospheric Environment 40, 1526-1537.
Stein, A., Draxler, R., Rolph, G., Stunder, B., Cohen, M., Ngan, F., 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society 96, 2059-2077.
Stone, E.A., Schauer, J.J., Pradhan, B.B., Dangol, P.M., Habib, G., Venkataraman, C., Ramanathan, V., 2010. Characterization of emissions from South Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas. Journal of Geophysical Research: Atmospheres (1984–2012) 115.
Streets, D., Yarber, K., Woo, J.H., Carmichael, G., 2003. Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles 17.
Tao, J., Zhang, L., Engling, G., Zhang, R., Yang, Y., Cao, J., Zhu, C., Wang, Q., Luo, L., 2013. Chemical composition of PM2.5 in an urban environment in Chengdu, China: Importance of springtime dust storms and biomass burning. Atmospheric Research 122, 270-283.
Tao, J., Zhang, L., Zhang, R., Wu, Y., Zhang, Z., Zhang, X., Tang, Y., Cao, J., Zhang, Y., 2016. Uncertainty assessment of source attribution of PM2.5 and its water-soluble organic carbon content using different biomass burning tracers in positive matrix factorization analysis — a case study in Beijing, China. Science of The Total Environment 543, Part A, 326-335.
Urban, R.C., Lima-Souza, M., Caetano-Silva, L., Queiroz, M.E.C., Nogueira, R.F.P., Allen, A.G., Cardoso, A.A., Held, G., Campos, M.L.A.M., 2012. Use of levoglucosan, potassium, and water-soluble organic carbon to characterize the origins of biomass-burning aerosols. Atmospheric Environment 61, 562-569.
Wang, G., Kawamura, K., Cheng, C., Li, J., Cao, J., Zhang, R., Zhang, T., Liu, S., Zhao, Z., 2012. Molecular distribution and stable carbon isotopic composition of dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls in size-resolved atmospheric particles from Xi’an City, China. Environmental science & technology 46, 4783-4791.
Wang, L., Qi, J., Shi, J., Chen, X., Gao, H., 2013. Source apportionment of particulate pollutants in the atmosphere over the Northern Yellow Sea. Atmospheric Environment 70, 425-434.
Wang, Q., Shao, M., Liu, Y., William, K., Paul, G., Li, X., Liu, Y., Lu, S., 2007. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases. Atmospheric Environment 41, 8380-8390.
Watson, J., Chow, J., Chen, L., Kohl, S., Tropp, R., Trimble, D., Chancellor, S., Sodeman, D., Ho, S., 2008. Assessment of carbon sampling artifacts in the IMPROVE. STN/CSN, and SEARCH networks, prepared by Desert Research Institute, Reno, NV, USA.
Watson, J.G., Chow, J.C., Houck, J.E., 2001. PM 2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere 43, 1141-1151.
Zhang, X., Gong, S., Shen, Z., Mei, F., Xi, X., Liu, L., Zhou, Z., Wang, D., Wang, Y., Cheng, Y., 2003. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE‐Asia: 1. Network observations. Journal of Geophysical Research: Atmospheres 108.
Zhang, X., Liu, Z., Hecobian, A., Zheng, M., Frank, N., Edgerton, E., Weber, R., 2012. Spatial and seasonal variations of fine particle water-soluble organic carbon (WSOC) over the southeastern United States: implications for secondary organic aerosol formation. Atmospheric Chemistry and Physics 12, 6593-6607.
Zheng, X., Liu, X., Zhao, F., Duan, F., Yu, T., Cachier, H., 2005. Seasonal characteristics of biomass burning contribution to Beijing aerosol. Science in China Series B: Chemistry 48, 481-488.
Zhu, C.-S., Cao, J.-J., Shen, Z.-X., Liu, S.-X., Zhang, T., Zhao, Z.-Z., Xu, H.-M., Zhang, E.-K., 2012. Indoor and Outdoor Chemical Components of PM 2.5 in the Rural Areas of Northwestern China. Aerosol Air Qual. Res 12, 1157-1165.
Zhu, C.-S., Cao, J.-J., Tsai, C.-J., Shen, Z.-X., Han, Y.-M., Liu, S.-X., Zhao, Z.-Z., 2014. Comparison and implications of PM2.5 carbon fractions in different environments. Science of The Total Environment 466–467, 203-209.
Zhu, C.-S., Cao, J.-J., Tsai, C.-J., Shen, Z.-X., Liu, S.-X., Huang, R.-J., Zhang, N.-n., Wang, P., 2015. The rural carbonaceous aerosols in coarse, fine, and ultrafine particles during haze pollution in northwestern China. Environmental Science and Pollution Research, 1-7.
指導教授 李崇德(Chung-te Lee) 審核日期 2016-5-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明