博碩士論文 102327012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.189.188.161
姓名 呂佳承(Chia-Cheng Lu)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 本質/磷摻雜氫化非晶矽(a-Si:H)堆疊結構應用於背表面電場光電特性與鈍化品質之關聯探討
相關論文
★ 以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力★ 高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析
★ 局域性表面電漿效應應用於增益有機發光二極體發光強度之參數優化研究★ 最佳化設計金屬有機化學氣相沉積高溫加熱系統數值分析研究
★ 以濺鍍CIG三元靶調變硒化製程壓力製作CIGS太陽能電池之特性分析★ 最佳化OLED面型蒸鍍加熱器設計與腔體流場數值分析
★ 以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響★ 電漿診斷系統輔助化學氣相沉積之鈍化層薄膜製程區間研究
★ 以數值分析法分析氮化鎵薄膜沉膜機制之探討暨實作驗證★ 電弧噴塗積層製造:Ta/TaN 薄膜物理氣相沉積中腔體襯套翻新與顆粒缺陷減少相關性研究
★ 以RTP硒化法探討CIS薄膜及元件特性之研究★ 局域性表面電漿共振效應應用於OLED出光增益之研究
★ TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究
★ 自製蘭牟爾探針診斷TE微波模式電子迴旋共振電漿★ 以噴塗技術在不銹鋼基板上沉積氧化矽阻隔層應用於可撓式CIGS太陽電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用射頻電漿輔助化學氣相沉積(Radio-frequency plasma enhanced chemical vapor deposition, RF-PECVD)製備本質與磷化氫摻雜氫化非晶矽(a-Si:H)薄膜堆疊結構,射頻電漿輔助化學氣相沉積為產業廣泛使用之設備,學理發展完整、設備技術純熟,其特性為沉積速率較緩慢;能沉積高緻密性薄膜,故適合應用於嚴格要求低薄膜厚度與高薄膜品質之異質接面太陽能電池(Heterojunction with intrinsic thin layer solar cell, HIT)的結構中。本實驗以RF-PECVD引入矽甲烷(SiH4)、氫氣(H2)、磷化氫(PH3)與氬氣(Ar)製備本質堆疊磷摻雜氫化非晶矽薄膜,實驗規劃調變射頻功率(RF power)、氫稀釋比例(Hydrogen dilution ratio)、基板溫度(Substrate temperature)、電極間距(Electrode distance)、製程壓力(Pressure)、磷化氫氣體流量(PH3 Flow)等製程參數對a-Si:H薄膜特性影響,並且使用四點探針薄膜電阻量測儀(Four point sheet resistance meter) 、霍爾效應分析儀(Hall)、橢圓偏光儀(Ellipsometer)、二次離子質譜儀(Secondary ion mass spectrometer, SIMS)量測薄膜結構與電特性、穿透式電子顯微鏡(Transmission electron microscopy, TEM)觀察薄膜接面平滑度與鈍化品質之關係,最後以光電導生命週期量測儀 (Photoconductance lifetime tester)測量少數載子生命週期(Lifetime)與表面載子複合速率(SRV)結果得知鈍化品質優劣。未來期望應用於異質接面太陽能電池背表面電場上,以提升電池開路電壓與短路電流。
研究結果顯示,在調變參數的情形下,薄膜結晶率愈高則導電特性愈好,而磷摻雜氫化非晶矽薄膜中的磷原子雖然可以貢獻電子提升薄膜電特性,但是過多的磷原子相對會導致缺陷密度提升,不但不利於摻雜的活化更嚴重影響少數載子生命週期,故如何再生命週期與導電特性上取得平衡是相當重要的關鍵。
進行優化後的堆疊結構中不但提升本質層之鈍化效果,更能在太陽能電池池內建構一背電場提升短路電流,製備出之薄膜之摻雜濃度可大於1019且少數載子生命週期可大幅提高到1.8 msec以上。
摘要(英) In this study, the intrinsic/phosphorus doping hydrogenated amorphous silicon (a-Si:H) double structure was optimized by the process conditions in which film growth of doped silicon as a back surface field (BSF) layer in a symmetric cell structure was prepared by standard radio-frequency plasma enhanced chemical vapor deposition (RF-PECVD). PF-PECVD had major advantages: (1) low operation temperature, (2) higher compactness of deposited layer, (3) good passivation properties of deposited layer, (4) good step coverage.
The process parameters effect of a-Si:H thin films such as radio-frequency power, hydrogen dilution ratio, substrate temperature, electrode distance, pressure, PH3 flow was investigated. The thin films physical and optical properties were analyzed by Four Point Sheet Resistance Meter, Hall, TEM, Ellipsometer, Photoconductance lifetime tester and Secondary Ion Mass Spectrometer. We determined the thin film quality by photo conductance lifetime tester. In addition, this double structural film will be applied to heterojunction with intrinsic thin layer (HIT) solar cells as a back surface field layer to improve the open-circuit voltage and short-circuit current of solar cells.
The results of experiments show that the excess phosphorus atoms in the films will increase the defect and degrade the electronic properties. Thus, the control of phosphorus content in the films is very important to obtain a high electronic properties. We achieved high quality of BSF on surface passivation, resulting lifetime up to 1.5ms and concentrations > 1019 in 4cm2 HIT solar cell.
關鍵字(中) ★ 氫化非晶矽
★ 磷摻雜
★ 太陽能電池
★ 堆疊結構
關鍵字(英) ★ HIT solar cell
★ doping
★ PECVD
論文目次 摘要 I
Abstract III
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XIV
第一章 緒論 1
1-1 前言 1
1-2 太陽能電池發展背景 3
1-3 研究動機及方法 5
1-4 論文架構 7
第二章 基本理論及文獻回顧 8
2-1 太陽能電池基本原理 8
2-2化學氣相沉積(Chemical vapor deposition) 13
2-3 鈍化原理與機制 17
2-4薄膜沉積 19
2-4-1 薄膜沉積原理 19
2-4-2 非晶相轉換模型 21
2-4-3 氫化非晶矽薄膜介紹 24
2-5 載子生命週期復合機制 26
2-5-1輻射復合(Radiative/band to band recombination) 26
2-5-2歐傑復合(Auger recombination) 27
2-5-3夏克禮-里德-霍爾復合(Shockley-Read-Hall recombination) 28
2-5-4表面復合(Surface recombination) 29
2-6 文獻回顧 30
第三章 研究方法與實驗設備 38
3-1 實驗方法 38
3-2 實驗步驟 40
3-2-1 試片基板清洗 40
3-2-2 試片製作 41
3-3 實驗裝置與量測 42
3-3-1射頻電漿輔助化學氣相沉積(Radio-frequency plasma enhanced chemical vapor deposition, RF-PECVD) 42
3-3-2橢圓偏光儀(Ellipsometer) 45
3-3-3霍爾量測(Hall) 47
3-3-4光電導生命週期量測儀(Photoconductance lifetime tester) 48
3-3-5二次離子質譜儀(Secondary Ion Mass Spectrometer, SIMS) 49
3-3-6光放射光譜儀(Optical emission spectroscopy, OES) 50
第四章 實驗結果與討論 52
4-1 10nm磷摻雜矽薄膜特性優化 53
4-1-1磷化氫流量(Phosphorus flow) 53
4-1-2製程壓力(Pressure) 58
4-1-3射頻功率(Power) 62
4-1-4氫稀釋濃度(Dilution ratio) 67
4-1-5電極間距(Electrode distance) 71
4-1-6製程溫度(Temperature) 75
4-2 5nm本質層對於堆疊結構特性影響分析 78
4-2-1 5nm本質層氫稀釋濃度在高低壓力沉積之氫化非晶矽薄膜特性對於堆疊結構之影響 79
4-2-2 5nm本質層射頻功率在高低壓力沉積之氫化非晶矽薄膜特性對於堆疊結構之影響 86
4-3本質/磷摻雜(a-Si:H)堆疊結構應用於背表面電場特性分析 93
4-3-1堆疊結構以SIMS量測雜質總量 93
4-3-2堆疊結構場效鈍化效果分析 94
4-3-3 HIT太陽能電池背表面電場與矽晶圓界面缺陷 98
第五章 結論與未來展望 103
參考文獻 107
參考文獻 [1] H. Graßl, et al. Towards Sustainable Energy SystemsTowards Sustainable Energy System, German Advisory Council on Global Change (WBGU), Germany, 2003.
[2] P. Würfel, et al. Physics Of Solar Cells, Willey-VCH Verlag GmbH & Co.KgaA, 2005.
[3] 黃惠良等著,太陽電池,初版,五南出版社,民國九十七年十二月。
[4] 翁敏航等著,太陽能電池:原理、元件、材料、製程與檢測技術,初版,東華出版社,民國一百零一年六月。
[5] 許元錫,「同質與異質矽晶太陽電池之電特性與效率比較研究」,國立中央大學,光電科學與工程學系碩士論文,民國一百零三年。
[6] Swanson, R. M, “A vision for crystalline silicon photovoltaics”, Progress in Photovoltaics, Vol. 14, pp. 443-453, 2006.
[7]. National Renewable Energy Laboratory(USA), 2015, http://www.nrel.gov/ncpv/.
[8] Hitoshi Sakata and Makoto Tanaka, “Sanyo’s Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business”, IEEE 4th World Conference, 2006.
[9] Leo J.H. Lin, Y.-P. Chiou , “Improving thin-film crystalline silicon solar cell efficiency with back surface field layer and blaze diffractive grating”, Solar Energy, Vol.86, pp.1485~1490, 2012.
[10] M. Taguchi, et al. “Obtaining a Higher Voc in HIT Cells”, Progress in Photovoltaics: Research and Applications, Vol. 13, pp. 481-488, 2005.
[11] Yang H, et al. “Optical emission spectroscopy investigation on very high frequency plasma and its glow discharge mechanism during the microcrystalline silicon deposition”, Thin Solid Films, Vol.472, pp.125-129, 2005.
[12] Donald A. Neamen, Semiconductor Physics and Devices: Basic Principles, 4th, McGraw-Hill, 2011.
[13] Pelanchon, et al. “The photocurrent and the open circuit voltage of a silicon solar cell”, Solar cells, Vol. 28(1), pp.41-55, 1990.
[14] 顧鴻濤,太陽能電池元件導論,全威圖書有限公司,台北,民國九十七年。
[15] A. Matsuda and K. Tanaka, “Guiding principle for preparing highly photosensitive Si-based amorphous alloys”, J.Non-Cryst.Solids, pp.97-98, 1987.
[16] Michael Quirk , Julian Serda, Semiconductor Manufacturing Technology, 1st, Prentice Hall, 2000.
[17] A. Matsuda, et al. “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy &Solar Cells, Vol. 78, pp. 3-26, 2003.
[18]A. Matsuda, “Thin-Film Silicon-Growth Process and Solar Cell Application”, Japanese Journal of Applied Physics, Vol. 43, pp.7909–7920, 2004.
[19]Y. Ruoche, et al. Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio-frequency glow discharge, 1997.
[20] M. Kishner, “On the balance between silylene and silyl radicals in rf glow discharges in silane: The effect on deposition rates of a-Si:H”, Journal of Applied Physics, Vol. 62, pp. 2803–2811, 1987.
[21] Y. Yamamoto, et al. “Passivation Effect of Plasma Chemical Vapor Deposited SiNx on Single Crystalline Silicon Thin Film Solar Cells”, Japanese Journal of Applied Physics, Vol. 42, pp. 5135-5139, 2003.
[22] Burrows, et al. “Role of hydrogen bonding environment in a-Si:H films for c-Si surface passivation”, Journal of Vacuum Science & Technology A, Vol. 26(4), pp. 683-687, 2008.
[23] J. Sritharathikhun, et al. “Surface Passivation of Crystalline and Polycrystalline Silicon Using Hydrogenated Amorphous Silicon Oxide Film”, Japanese Journal of Applied Physics, Vol. 46(6A), pp. 3296-3300, 2007.
[24] M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Ch.11 Deposition, 2001.
[25]A.V Shah, et al. “Material and solar cell research in microcrystalline silicon”, Solar Energy Materials and Solar Cells, Vol 78, pp.469,2003.
[26]A. Matsuda, “Microcrystalline silicon. Growth and device application” Journal of Non-Crystalline Solids, Vol. 338, pp.1-12, 2004.
[27] 謝宏健,「以奈米小球提升矽薄膜太陽能電池吸收之研究」,國立中央大學,光電科學與工程學系碩士論文,民國九十七年。
[28] A.von Keudell, et al. “Direct insertion of SiH3 radicals into strained Si-Si surface bonds during plasma deposition of hydrogenated amorphous silicon films”, Physical Review B, Vol. 59, no. 8, Article ID 5791, 1999.
[29] D. L. Meier, et al. “Determination of Surface Recombination Velocities for Thermal Oxide and Amorphous Silicon on Float Zone Silicon”, 17th NREL Crystalline Silicon Workshop, August, 2007.
[30] W. Shockley et al. “Statistics of the Recombinations of Holes and Electrons”, Physical Review, Vol. 87, pp.835–842, 1952.
[31] R. Hall, “Electron-Hole Recombination in Germanium”, Physical Review, Vol. 87, pp. 387–387, 1952.
[32] 張世育,「矽量子點鑲嵌在氮化矽薄膜之合成與光學性質研究」,中華大學,電機工程碩士論文,民國九十四年。
[33] T. S. Horanyi, et al. “In situ bulk lifetime measurement on silicon with a chemically passivated surface” , Applied Surface Science, Vol. 63, pp.306-311, 1993.
[34] Özlem Pehlivan, “Structural and interfacial properties of large area n-a-Si:H/i-a-Si:H/p-c-Si heterojunction solar cells” , Materials Science in Semiconductor Processing, Vol.22 ,pp.69-75, 2014.
[35] H. Fujiwara, et al. “Impact of epitaxial growth at the hetero interface of a-Si:H/c-Si solar cells”, Applied Physics Letters, Vol. 90, pp.013503-013506, 2007.
[36] Jia Ge, et al. “Analysis of intrinsic hydrogenated amorphous silicon passivation layer growth for use in heterojunction silicon wafer solar cells by optical emission spectroscopy” , JOURNAL OF APPLIED PHYSICS, Vol.113, 2013.
[37] Yusuke Fukuda, et al. “Optical emission spectroscopy study toward high rate growth of
microcrystalline silicon” ,Thin Solid Films, Vol.386, pp.256-260, 2001.
[38] S.Ram, et al. “Plasma emission diagnostics during fast deposition of microcrystalline silicon thin films in matrix distributed electron cyclotron resonance plasma CVD system”, Physica status solidi©, Vol.7, pp.553–556, 2010.
[39] S. Martín de Nicolás, et al. “n-type a-Si:H layers applied to the back side of heterojunction solar cells: Experimental and simulation analysis” , Solar Energy Materials & Solar Cells, Vol.115, pp.129-137, 2013.
[40] U.K. Das, et al. “Surface passivation and heterojunction cells on Si (100) and (111) wafers using dc and rf plasma deposited Si:H thin films” , Applied Physics Letters, Vol.92, 063504-1–063504-3, 2008.
[41] Stefaan De Wolf, et al. “Nature of doped a-Si:H/c-Si interface recombination”, JOURNAL OF APPLIED PHYSICS, Vol.105, 103707, 2009.
[42] Fengyou Wang, et al. “Boron doped nanocrystalline silicon/amorphous silicon hybrid emitter layers used to improve the performance of silicon heterojunction solar cells”, Solar Energy, Vol.108, pp.308-314, 2014.
[43] Toru Sawada, et al. “HIGH-EFFICIENCY a-Si/c-Si HETEROJUNCTION SOLAR CELL”, IEEE, pp.1219-1226, 1994.
[44] Taguchi, M, et al. “24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer.”, IEEE Journal of Photovoltaics, 2014.
[45] 陳建勳,「非晶矽繞射光學元件的製作與分析」,國立中央大學,物理研究所碩士論文,民國九十四年。
[46] R.Martins, et al. “Role of ion bombardment and plasma impedance on the performances presented by undoped a-Si:H films”, Thin Solid Films, Vol.383, pp.165-168, 2001.
[47]P.Klement, et al. “Correlation between optical emission spectroscopy of hydrogen/germane plasma and the Raman crystallinity factor of germanium layers” , Appl. Phys.Lett., Vol.102, 2013.
[48]A.Matsuda, et al. “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Sol Energ Mat Sol C, Vol. 78, pp. 3-26, 2003.
[49]D.E. Aspnes, et al. “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs and InSb from 1.5 to 6.0 eV”, Phys. Rev. B, Vol.27, pp. 985, 1983.
[50]D.Das, “Evolution of microcrystalline growth pattern by ultraviolet spectroscopic ellipsometry on Si:H films prepared by Hot-Wire CVD” ,Solid State Communications, Vol.128, pp.397–402, 2003.
[51] S.M. SZE, “Semiconductor Devices Physics and technology”, pp. 55-56, 2001.
[52] Donald A. Neamen, “Semiconductor Physics and Devices”, pp. 177-180, 2003.
[53] P. Tristant, et al. “Microwave Plasma Enhanced CVD of Aluminum Oxide Films:OES Diagnostics and Influence of the RF Bias”, Thin Solid Films, Vol. 390, pp. 51–58, 2001.
[54] E. Campbell, et al. “Laser plasma coupling in long pulse, long scale length plasmas”, Applied Physics Letters,Vol. 43, pp. 54-59, 1983.
[55] 樊洁平,劉惠民,田強,「光吸收介質的吸收係數與介電函數虛部的關係」,大學物理,28卷,3期,民國九十八年。
[56] Katsuya Oda, et al. “Effects of high-concentration phosphorus doping on crystal quality and lattice strain in SiGe HBTs” , Applied Surface Science, Vol.254, pp.6017-6020, 2008.
[57] 蔡宗典,「超薄 ITO 透明導電膜應用在觸控面板之研究」,國立中央大學,光電科學研究所碩士論文,民國九十七年。
[58] 張善淵,「使用電子迴旋供震化學氣相沉積製備異質接面太陽能電池表面鈍化氫化非晶矽薄膜製程參數研究」, 國立中央大學,能源工程研究所碩士論文,民國一百零二年。
[59] A. Francis, et al. “Quenching of the 750.4 nm argon actinometry line by H2 and several hydrocarbon molecules”, Appl. Phys. Lett., Vol. 71, pp. 3796–3799, 1997.
[60] 潘彥妤,「微晶矽薄膜製程之電漿放射光譜分析與其在太陽能電池之應用」,中原大學,化學工程研究所碩士論文,民國九十七年。
[61] Shui-Yang Lien, et al. “Effects of RF power and pressure on performance of HF-PECVD silicon thin-film solar cells”, Thin Solid Films, Vol.518, pp.7233-7235, 2010.
[62]劉憲明,「寬能隙本質氫化非晶氧化矽(a-SiOx:H)薄膜光電特性與鈍化品質
之關聯探討」,國立中央大學,機械工程學系光機電工程碩士班碩士論文,民國一百零三年。
[63] Xueyu Zhang, et al. “Influence of Ar/H 2 ratio on the characteristics of phosphorus-doped hydrogenate dnanocrystalline silicon films prepared by electron cyclotron resonance plasma-enhanced chemical vapor deposition” ,Thin Solid Films, Vol.521, pp.181-184, 2012.
[64] 吳培慎,「利用 PECVD 製備超薄本質氫化非晶矽(a-Si:H) 薄膜之優質鈍化成效研究」,國立中央大學,光電科學與工程學系照明顯示科技碩士班,民國一百零四年。
[65] Toru Sawada, et al. “HIGH-EFFICIENCY a-Si/c-Si HETEROJUNCTION SOLAR CELL”, IEEE, First WCPEC, Dec. 5-9, 1994.
[66] Arti Rawat, et al. “Numerical simulations for high efficiency HIT solar cells using microcrystalline silicon as emitter and back surface field (BSF) layers”, Solar Energy, Vol.110, pp.691-703, 2014.
[67] Antoine Descoeudres, et al. “>21% Efficient Silicon Heterojunction Solar Cells on n- and p-Type Wafers Compared”, IEEE JOURNAL OF PHOTOVOLTAICS, Vol.3, pp.83-89, 2013.
[68] Jonas Geissbühler, et al. “Amorphous/crystalline silicon interface defects induced by hydrogen plasma treatments”, Applied Physics Letters, Vol.102, 2013.
指導教授 利定東(Tomi T. Li) 審核日期 2015-5-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明