博碩士論文 102328001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.224.37.68
姓名 楊萬嶸(Wan-Jung Yang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 局域性表面電漿效應應用於增益有機發光二極體發光強度之參數優化研究
相關論文
★ 以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力★ 高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析
★ 最佳化設計金屬有機化學氣相沉積高溫加熱系統數值分析研究★ 以濺鍍CIG三元靶調變硒化製程壓力製作CIGS太陽能電池之特性分析
★ 最佳化OLED面型蒸鍍加熱器設計與腔體流場數值分析★ 以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響
★ 電漿診斷系統輔助化學氣相沉積之鈍化層薄膜製程區間研究★ 以數值分析法分析氮化鎵薄膜沉膜機制之探討暨實作驗證
★ 電弧噴塗積層製造:Ta/TaN 薄膜物理氣相沉積中腔體襯套翻新與顆粒缺陷減少相關性研究★ 以RTP硒化法探討CIS薄膜及元件特性之研究
★ 局域性表面電漿共振效應應用於OLED出光增益之研究★ TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究
★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究★ 自製蘭牟爾探針診斷TE微波模式電子迴旋共振電漿
★ 以噴塗技術在不銹鋼基板上沉積氧化矽阻隔層應用於可撓式CIGS太陽電池之研究★ 使用電子迴旋共振化學氣相沉積製備異質接面太陽能電池表面鈍化氫化非晶矽薄膜之製程參數研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究使用數值模擬以及實作驗證進行局域性表面電漿效應(LSPR, Localized Surface Plasmon Resonance )應用於增益有機發光二極體(OLED)發光強度之參數優化研究。
OLED為近幾年來的新興節能產品,擁有面光源、低耗能等優點,非常適合應用於室內照明。但由於開發時間較LED晚,要打入現今照明市場,其發光強度、製作成本都必須要有顯著的突破。在眾多提昇其發光強度的研究中,製程中加入奈米級金屬粒子之局域性表面電漿效應擁有能夠直接提昇其電激發光強度的特性。
本研究即針對影響此效應增益發光強度之各項參數進行優化研究,在數值模擬上分別改變粒子尺寸、周圍介質、粒子間距等參數,討論其變化趨勢;在實作上進行金屬銀之薄膜生長,驗證模擬得到的趨勢。最後與現有之白光OLED 發光光譜進行比對,得到較佳的製程參數。
透過本研究的結論,將能有效降低使用局域性表面電漿效應增益有機發光二極體發光強度之研究成本以及時間,提昇OLED的市場化的速度。
摘要(英) In this study, we use numerical simulation and experimental verification doing the investigation for optimizing parameters of enhanced lighting intensity of organic emitting diode by localized surface plasmon resonance.
OLED with the surface light source and flexibility is very suited for indoor illumination. However, the technology of OLED is falling behind LED because of late discovery. It is important to improve lighting intensity and decrease cost of OLED for market competition. LSPR is the way to directly improve the lighting intensity.
In numerical simulation, we adjust the sizes, surrounding material and spacing of nano-particle to discuss the tendency. In experiment, we verify the tendency by Ag nano-particle. At last, we gain the better parameter by coinciding with the emission spectrum of white OLED.
With the conclusion, we can reduce the time and cost of improving lighting intensity of OLED by LSPR.
關鍵字(中) ★ 有機發光二極體
★ 局域性表面電漿效應
★ 增益發光
關鍵字(英) ★ OLED
★ LSPR
★ Lighting Enhancement
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-2研究背景與動機 3
1-3文獻回顧 4
1-4研究目標 7
第二章 理論背景介紹 9
2-1 有機發光二極體 9
2-1-1 OLED 發展歷史 9
2-1-2 OLED 發光原理 12
2-1-3 OLED 技術分析 13
2-2局域性表面電漿子理論 18
2-2-1 電磁波在物質中傳播的特性[41] 19
2-2-2電磁波與金屬奈米粒子的交互作用[42] 20
2-2-3尺寸對局域性表面電漿吸收波長的影響 23
2-2-4周圍介質對局域性表面電漿吸收波長的影響 25
2-2-5粒子間交互作用對局域性表面電漿共振位置的影響 28
第三章 研究方法與實驗架構 29
3-1 研究方法 29
3-2數值模擬方法 31
3-2-1 有限元素法[53] 31
3-2-2 電磁波方程式[54] 34
3-2-3散射、吸收、消光截面 35
3-2-4 完美匹配層 36
3-2-5幾何結構 37
3-2-6材料參數 40
3-3樣品製作與實驗儀器介紹 43
3-3-1 樣品製作 44
3-3-2 原子力顯微鏡 44
3-3-3 吸收光譜儀 45
第四章 結果與討論 46
4-1 模擬結果 46
4-1-1單顆奈米粒子的尺寸效應 48
4-1-2 單顆奈米粒子的周圍介質效應 50
4-1-3多顆奈米粒子的間距效應(電場偏振垂直粒子) 56
4-1-4多顆奈米粒子的間距效應(電場偏振平行粒子) 62
4-1-5模擬結論 68
4-2 製程結果 68
4-2-1 2nm厚銀膜之金屬奈米粒子 69
4-2-2 5nm厚銀膜之金屬奈米粒子 72
4-2-3 10nm厚銀膜之金屬奈米粒子 75
4-2-4 製程結論 78
第五章 結論與未來展望 79
參考文獻 81
參考文獻 [1]劉曜彰和曾美榕,「OLED照明光源發展現況」,工研院電子報,第10005期,2011年5月。
[2]林晉聲,「未來照明新星-OLED Lighting- 技術趨勢與瓶頸」,顯示器智庫,1-11頁,2011年8月。
[3] M. Moskovits, “Surface-enhanced spectroscopy”, Review of Modern Physics, Vol. 57, No.3, Part I, 1985.
[4]J. Vuckovic et al., “Surface Plasmon Enhanced Light-Emitting Diode”, IEEE Journal of Quantum Electronics, Vol. 36, No. 10, pp.1131-1144, 2000.
[5]K. L. Kelly et al., “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment”, J. Phys. Chem. B, Vol.107, pp.668-677, 2003.
[6]K. Okamoto et al., “Surface-Plasmon-Enhanced light emitters based on InGaN quantum wells”, Nature materials, Vol.3, pp.601-605, 2004.
[7]S. Pillai et al., “Surface Plasmon Enhanced Silicon Solar Cells”, Journal of Applied Physics, Vol. 101, 093105(8pp), 2007.
[8]H. Azarinia et al., “FDTD Simulation of Photonic Crystal Enhanced OLED”, IEEE, pp.223-226, 2007.
[9]H. J. Park et al., “Surface Plasmon Enhanced Photoluminescence of Conjugated Polymers”, Applied Physics, Vol.90, 161107(3pp), 2007.
[10]J. W. Park et al., “Organic Electroluminescent Devices using quantum-size silver nanoparticles”, Mater Electron, S393-S397, 2007.
[11]K. Saxena et al., “A Review on the Light Extraction Techniques in Organic Electroluminescent Devices”, Optical Materials, Vol. 32, pp.221-233, 2009.
[12]K. Y. Yang et al., “Surface Plasmon-Enhanced Spontaneous Emission Rate in an Organic Light Emitting Device Structure: Cathode Structure for Plasmonic Application”, Applied Physics, Vol.94, 173301(3pp), 2009.
[13]K. Y. Yang et al., “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure”, Optics Express, Vol. 17, No. 14, pp.11495-11504, 2009.
[14]K. Y. Yang et al., “Surface Plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode Structure for Plasmonic application”, Applied Physics, Vol.94, 173301(3pp), 2009.
[15]O. A. Yeshchenko et al., “Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica”, Physical Review B, Vol.79, 235438(8pp), 2009.
[16]F. Liu et al., “A dye functionalized silver-silica core-shell nanoparticle organic light emitting diode”, Organic Electronics, Vol. 12, pp.1279-1284, 2011.
[17]F. Liu et al., “Enhanced organic light emitting diode and solar cell performances using silver nano-clusters”, Organic Electronics, Vol. 13, pp.1623-1632, 2012.
[18]A. Fujiki et al., “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode”, Applied Physics, Vol.96, 043307(3pp), 2010.
[19]L. Y. Ou Yang et al., “Numerical synthesis of metallic nanostructures for enhancing for enhancing the emission of a dipole through surface plasmon coupling”, Optics Communications, Vol.283, pp.2967-2973, 2010.
[20]Kumar et al., “Efficiency enhancement of organic light emitting diode via surface energy transfer between exciton and surface plasmon”, Organic Electronics, Vol. 13, pp.159-165, 2012.
[21]A. Kumar et al., “Surface plasmon enhanced blue organic light emitting diode with nearly 100% fluorescence efficiency”, Organic Electronics, Vol.13, pp.1750-1755, 2012.
[22]A. Kumar et al., “Energy transfer process between exciton and surface plasmon: Complete transition from Forster to surface energy transfer”, Applied Physics, Vol.102, 203304(5pp), 2013.
[23]J. S. Jung et al., “Luminescence variation of organic Alq3 nanoparticles on surface of Au nanoparticles and graphene”, Synthetic Metals, Vol. 162, pp.1852-1857, 2012.
[24]S. H. Chen et al., “Light Enhancement of Plasmonic Nanostructures for Polymer Light-Emitting Diodes at Different Wavelengths”, Applied Physics Express, Vol. 5, 062001(3pp), 2012.
[25]H. Zhang et al., “Surface-plasmon-enhanced GaN-LED based on a multilayered M-shaped nano-grating”, Optics Express, Vol.21, No. 11, pp.13942-13501, 2013.
[26]Y. C. Chen et al., “Enhancement and Quenching of Fluorescence by Silver Nanoparticles in Organic Light-Emitting Diodes”, Journal of Nanomaterials, Vol. 2013, 841436(6pp), 2013.
[27] 陳金鑫和黃孝文,OLED:有機電激發光材料與元件,五南出版社,2005年。
[28]J. H. Burroughes, et al., “Light-emitting diodes based on conjugated polymer”, Nature, Vol. 347, pp.539-541, 1990.
[29]拓樸產業研究所研究報告,2013年。
[30]陳金鑫、陳錦地和吳忠幟,白光OLED照明,五南出版社,2009年。
[31]P. Matyba, et al., “Graphene and mobile ions: The key to all-plastic, solution-processed light-emitting devices”, ACS Nano, Vol.4, pp.637-642, 2010.
[32]Y. Galagan, et al., ”ITO-free flexible organic solar cells with printed current collecting grids”, Solar Energy Materials & Solar Cells, Vol.95, pp.1339-1343, 2011.
[33]S. R. Kim, et al., ”Effects of argon and oxygen flow rate on water vapor barrier properties of silicon oxide coatings deposited on polyethylene terephthalate by plasma enhanced chemical vapor deposition”, Thin Solid Films, Vol.518, pp.1929-1934, 2010.
[34]D. R. Cairns and G. P. Crawford, “Electromechanical properties of transparent conducting substrates for flexible electronic displays”, Proceedings of the IEEE, Vol.93, pp.1451-1458, 2005.
[35]K. Alzoubi, et al., “Experimental and analytical studies on the high cycle fatigue of thin film metal on PET substrate for flexible electronics applications”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Vol.1, pp.43-51, 2011.
[36]M. C. Tam, et al., “Surface-plasmon-enhanced photoluminescence from metal-capped Alq3 thin films”, Applied physics Letters, Vol.95, 051503(3pp), 2009.
[37]C. Y. Cho, et al., “Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles”, Applied Physics Letters, Vol.98, 051106(3pp), 2011.
[38]Y. Xiao, et al., “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles”, Applied Physics Letters, Vol.100, 013308(4pp), 2012.
[39]H. Raether, “Surface Plasmons”, Springer, New York, 1988.
[40]K. A. Willets and R.P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing”, Annu. Rev. Phys. Chem., Vol. 58, pp.267-97, 2007.
[41]李冠卿,近代光學,聯經出版事業公司,1988年。
[42]張勝雄、戴朝義,奈米電漿子波導元件於積體光學之應用物理雙月刊,2008年。
[43] U. Kreibig, et al., Optical Properties of Metal Clusters, Springer, Berlin, 1995.
[44] E. Cottanich, et al., Chem. Acc. Vol. 116, pp.514-523, 2006.
[45] M. G. Blaber, “Search for the Ideal Plasmonic Nanoshell: The
effects of surface scattering and alternatives to Gold and Silver” , J.
Phys. Chem. C, Vol. 113, 3041(5pp), 2009.
[46] Aleksandar D. Rakic, et al., “Optical properties of metallic films for vertical-cavity optoelectronic devices”, Applied Optics, Vol. 37, No. 22, pp.5271-5283, 1988.
[47] A. Liebsch, “Surface-plasmon dispersion and size dependence of Mie resonance: Silver versus simple metals”, Physical Review B, Vol. 48, No. 15, pp.317-328, 1993.
[48] S. Link, et al., “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles”, J. Phys. Chem. B, Vol. 103, pp.4212-4217, 1999.
[49] H. Kuwata, et al., “Resonant light scattering from metal nanoparticles Practical analysis beyond Rayleigh approximation”, Applied Physics Letters, Vol. 83, No.22, pp.4625-4627, 2003.
[50] S. Underwood, et al., “Effect of the solution Refractive Index on the Color of Gold Colloids”, Langmuir, Vol. 10, pp.3427-3430, 1994.
[51] T. Ung, et al., “Optical Properties of Thin Films of Au@SiO2 Particles”, J. Phys. Chem. B, Vol.105, pp.3441-3452, 2001.
[52] Q. Li, et al., “The resonant, near-resonant, and off-resonant plasmon coupling effects for the bonding modes in two types of asymmetric dimer”, Journal of Optics, Vol.16, 075004(7pp), 2014.
[53]王冒成,有限單元法,清華大學出版社,北京,2003。
[54]皮托科技股份有限公司,RF Module UserGuide,台灣。
[55] J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves”, Journal of Computational Physics, Vol 114, pp.185-200, 1994.
[56] Dimension 3100 Manual.
指導教授 利定東 審核日期 2015-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明