博碩士論文 102328006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:80 、訪客IP:44.200.77.92
姓名 杜修銘(Hsiu-Ming Du)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 多重曲率之聚光元件應用於聚光型太陽能電池系統
相關論文
★ 利用銦錫氧化物設計太陽能電池之電極對轉換效率之效益★ 側聚光型太陽能電池系統之聚光元件設計與製作
★ 結合繞射光柵與平凸透鏡之光束分頻元件於聚 光型太陽光電 / 太陽熱混合系統之應用★ 波前檢測應用於氣體折射率量測
★ 太陽光模擬系統之設計與製作★ 有機發光二極體熱特性模擬研究
★ 有機發光二極體激子光電特性模擬研究★ 太陽光與固態照明自動化混光技術研究
★ 高分子光柵應用於太陽光分光元件★ 利用色差分光之太陽能分光系統
★ 有機發光二極體光熱電特性整合模擬之研究★ 隨機奈米粒子模型應用於OLED 出光增益之研究
★ 太陽選擇性塗層與熱平行堆疊運用於太陽熱電發電系統之實時模擬研究★ 陰影疊紋式力-位移量測技術之研究
★ 繞射分波元件於混合型太陽能系統之應用★ 可撓式白光有機發光二極體光雪與色彩分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 三接面Ⅲ-Ⅴ族太陽能電池具有較高的轉換效率,但其成本較為昂貴,若在太陽能模組中加入聚光元件,將大面積的太陽光匯聚至小面積的太陽能電池上,可以降低太陽能系統的成本。然而,為了增加聚光倍率及使用三接面Ⅲ-Ⅴ族太陽能電池,會產生像散及色散的狀況,使得光線無法有效的匯聚至太陽能電池上,導致聚光效率的降低。
本論文針對聚光型太陽能模組之聚光元件─菲涅爾透鏡,使用多重曲率法之方式,將菲涅爾透鏡分為多個部分,每個部份搭配不同的曲率半徑能有效的改善像差與色散對聚光效率之影響,以提升聚光效率。接著,使用光學軟體LightTools,進行光學特性探討及模擬分析。並實際製作出設計成果,利用太陽能模擬器與太陽能分析儀進行量測實驗,來驗證模擬設計之可行性。最後,分析模擬結果與實驗結果之間的誤差原因。
摘要(英) Triple-junction solar cells with high conversion efficiency, but the cost is more expensive. If the solar module is added in the concentrator, the large area of sunlight converged to a small area for solar cells that can be reduced the cost of solar systems. However, in order to increase the concentration efficiency and using triple-junction solar cells. It will have the situation of aberration and chromatic aberration, so that the light cannot be effectively converged into the solar cells. Resulting in concentration efficiency is decrease.
In this study, mainly for the concentrator of the concentrator photovoltaic modules─Fresnel lens. Using the method of multiple focal lengths, the Fresnel lens is divided into a plurality of sections. In each part with a different focal length can effectively improve the impact of aberration and chromatic aberration for the concentration efficiency to enhance the concentration efficiency. Then, use optical software LightTools to carry on optical characteristic discussion and the simulation analysis. Manufacture actual production of design results, using of the solar simulator and solar module analyzer to measure the experiments for validate the feasibility of simulation design. Finally, analyze the error between simulation result and experiment result.
關鍵字(中) ★ 聚光型太陽能電池系統
★ 聚光元件
★ 聚光效率
★ 菲涅爾透鏡
★ 多重曲率
關鍵字(英) ★ Concentrated photovoltaics (CPV)
★ Concentrator
★ Fresnel lens
★ Concentrator efficiency
★ Multiple curvature lens
論文目次 目錄
摘要 I
Abstract IV
致謝 V
目錄 VI
圖目錄 VIII
表目錄 X
第一章 緒論 1
1-1 研究背景 1
1-2 太陽能聚光系統 4
1-2-1 聚光元件 4
1-2-2 菲涅爾透鏡(Fresnel lens) 4
1-2-3 太陽光譜 6
1-3 文獻回顧 7
1-4 研究動機 9
1-5 論文架構 9
第二章 基礎理論 10
2-1 幾何光學[24-26] 10
2-1-1 折射定律和反射定律 10
2-1-2 全反射和臨界角 12
2-1-3 造鏡者公式(Lens Maker′s Formula) 13
2-1-4 像差(Aberration) 13
2-1-5 色差(Chromatic Aberration) 14
2-1-6 光線追跡法(Ray Tracing) 14
2-2 非成像光學(NONIMAGING OPTICS) 15
2-3 菲涅爾透鏡之設計 15
2-3-1 圓錐系數 17
2-3-2 菲涅爾損失(Fresnel Loss) 18
2-4 太陽能電池特性 20
2-5 小結 21
第三章 聚光透鏡之設計與模擬 22
3-1 設計理念 22
3-2 設計流程 24
3-3 第一階段模擬 25
3-3-1 初始設計 26
3-3-2 特性分析 30
3-4 第二階段模擬 32
3-5 容忍角分析 40
3-6 小結 41
第四章 實驗方法與結果 42
4-1 實驗設備 42
4-2 實驗方法 46
4-3 實驗結果 50
4-3-1 未加菲涅爾透鏡進行量測實驗 50
4-3-2 加入菲涅爾透鏡進行量測實驗 52
4-4 溫度分析 55
4-5 小結 60
第五章 誤差分析 61
5-1 加工誤差 61
5-2 組裝誤差 62
5-3 儀器誤差 67
5-4 公式誤差 70
5-5 小結 71
第六章 結論與未來展望 73
6-1 結論 73
6-2 未來展望 74
參考文獻 75
參考文獻 參考文獻
[1] W. Palz, Power for the World: The Emergence of Electricity from the Sun, Pan Stanford Publishing Pte. Ltd., 1st Ed., Chap. 1 (2010).
[2] M. Yamaguchi, T. Takamoto, K. Araki, and N. Ekins-Daukes, “Multi-Junction III–V Solar Cells: Current Status and Future Potential,” Solar Energy, 79, 78-85 (2005).
[3] F. Dimroth, “High-Efficiency Solar Cells from III–V Compound Semiconductors,” Phys. Stat., 3, 373-379 (2006).
[4] H. Müller-Steinhagen, and F. Trieb, “Concentrating Solar Power: A Review of the Technology,” Technical Report from Quarterly of the Royal Academy of Engineering, United Kingdom, 43-50 (2004).
[5] A. Fernández-García, E. Zarza, L. Valenzuela, and M. Pérez, “Parabolic-Trough Solar Collectors and Their Applications,” Renewable and Sustainable Energy Reviews, 14, 1695-1721 (2010).
[6] K. Hennecke, B. Hoffschmidt, G. Koll, and T. Hartz, “The Solar Power Tower Jülich: A Solar Thermal Power Plant for Test and Demonstration of Air Receiver Technology,” Proceedings of ISES World Congress 2007 (Vol.1-Vol.5): Solar Energy and Human Settlement, Goswami, D. Yogi, Zhao, Yuwen, Springer (2009).
[7] R. Moore, M. Vernon, C. K. Ho, N. P. Siegel, and G. J. Kolb, “Design Considerations for Concentrating Solar Power Tower Systems Employing Molten Salt,” Technical Report from Sandia National Laboratories, United States, 1-50 (2010).
[8] D. Feuermann, and J. M. Gordon, “Solar Fiber-Optic Mini-Dishes: A New Approach to the Efficient Collection of Sunlight,” Solar Energy, 65(3), 159-170 (1999).
[9] D. Feuermann, and J. M. Gordon, “High-Concentration Photovoltaic Designs Based on Miniature Parabolic Dishes,” Solar Energy, 70(5), 423-430 (2001).
[10] P. Pérez-Higueras, E. Muñoz, G. Almonacid, and P.G. Vidal, “High Concentrator Photovoltaics Efficiencies: Present Status and Forecast,” Renewable and Sustainable Energy Reviews, 15, 1810-1815 (2011).
[11] S. Vaid, M. Kats, and G. Hering, “Concentrated Photovoltaic System Modules Using III–V Semiconductor Solar Cells”, United State Patent, Us20100037935 A1, (2010).
[12] H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A Review of Principle and Sun-Tracking Methods for Maximizing Solar Systems Output,” Renewable And Sustainable Energy Reviews, 13, 1800-1818 (2009).
[13] S. Abdallah, and O.O. Badran, “Sun Tracking System for Productivity Enhancement of Solar Still,” Desalination, 220, 669–676 (2008).
[14] J. A. Davison, and M. J. Simpson, “History and Development of the Apodized Diffractive Intraocular Lens,” Journal of Cataract & Refractive Surgery, 32(5), 849-858 (2006).
[15] 伍秀菁、汪若文和林美吟編輯,光學元件精密製造與檢測,全華圖書,新北市,民96。
[16] C. A. Gueymard, D. Myers, and K. Emery, “Proposed Reference Irradiance Spectra for Solar Energy Systems Testing,” Solar Energy, 73(5), 443–467 (2002).
[17] S. Olah, “Solar Energy Module and Fresnel Lens for Use in Same”, United State Patent, US6399874 B1, (2002).
[18] Web Page from Fresnel Technologies Inc. “Fresnel Lenses: High Quality Fresnel Lenses in a Variety of Size & Focal Lengths,” http://www.fresneltech.com/visible.html.
[19] A. W. Greynolds, “Superconic and Subconic Surface Descriptions in Optical Design,” International Optical Design Conference, Tucson, 1-5 (2002).
[20] J. R. Egger, “Use of Fresnel Lenses in Optical Systems: Some Advantages and Limitations,” Optical Systems Engineering, 193, 63-69 (1979).
[21] A. Davis, and F. Kühnlenz, “Optical Design Using Fresnel Lenses,” Optik & Photonik, 4, 52-55 (2007).
[22] 潘瑞文,「新式HCPV太陽電池模組散熱機制研究與系統最佳化設計」,行政院原子能委員會,委託研究計畫研究報告,民100。
[23] M. Buljan, J. Mendes-Lopes, P. Benítez, and J. C. Miñano, “Recent Trends in Concentrated Photovoltaics Concentrators’ Architecture,” J. Photonics for Energy, 4, 1-14 (2014).
[24] W. J. Smith, Modern Optical Engineering, McGraw-Hill Education, 4th ed., Chap. 1-3 (2007).
[25] E. Hecht, Optics, Addison-Wesley, 4th ed., Chap. 1-6 (2001).
[26] 許阿娟、朱嘉雯、林佳芬和陳志隆,光學系統設計進階篇,http://www.phys.ncku.edu.tw/optics/book_2/list_1.htm.
[27] D. H. Marimont, and B. A. Wandell, “Matching Color Images: The Effects of Axial Chromatic Aberration,” J. Opt. Soc. Am. A, 11(12), 3313-3322 (1994).
[28] R. R. Shannon, and J. C. Wyant, Applied Optics and Optical Engineering,
Academic Press Inc., 1st ed., Chap. 1 (1983).
[29] A. W. Greynolds, “Superconic and Subconic Surfaces in Optical Design,” International Optical Design Conference (IODC), Tucson, 1-6 (2002).
[30] A. I. Lvovsky, “Fresnel Equations,” Encyclopedia of Optical Engineering, R. G. Driggers, C. Hoffman, and R. Driggers, CRC Press (2013).
[31] A. Ibrahim, “Analysis of Electrical Characteristics of Photovoltaic Single Crystal Silicon Solar Cells at Outdoor Measurements,” Smart Grid and Renewable Energy, 2, 169-175 (2011).
[32] P. Singh, and N. M. Ravindra, “Temperature Dependence of Solar Cell Performance—an Analysis,” Sol. Energy Mater. Sol. Cells, 101, 36-45 (2012).
[33] A. Parretta, A. Sarno, and L. R. M. Vicari, “Effects of Solar Irradiation Conditions on the Outdoor Performance of Photovoltaic Modules,” Optics Communications, 153, 153–163 (1998).
[34] 華宇光能股份有限公司,http://www.arima.com.tw/.
[35] P. Benítez, J. C. Miñano, P. Zamora, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves, and M. Hernández, “High Performance Fresnel-Based Photovoltaic Concentrator,” Optics Express, 18, A25-A40 (2010).
[36] Web Page from Refractive Index Database, “Optical Constants of PMMA,” http://refractiveindex.info/?shelf=organic&book=poly(methyl_methacrylate)&page=Szczurowski.
[37] A. A. Mohammed, A. A. Saad, and A. N. Z. Rashed, “Matrices of the Thermal and Spectral Variations for the Fabrication Materials Based Arrayed Waveguide Grating (AWG) Devices,” Phys. Sci., 4(4), 205-211 (2009).
[38] T. Ishigure, E. Nihei, and Y. Koike, “Optimum Refractive-Index Profile of the Graded-Index Polymer Optical Fiber, Toward Gigabit Data Links,” Applied Optics, 35, 2048-2053 (1996).
[39] W. Zaaiman, and N. Taylor, “Procedure for the Determination of the Acceptance Angle of CPV Devices under Natural Solar Illumination,” Photovoltaic Specialists Conference (PVSC), Seattle, 1025-1028 (2011).
[40] K.K. Chong, and C.W. Wong, “General Formula for on-Axis Sun-Tracking System and its Application in Improving Tracking Accuracy of Solar Collector,” Solar Energy, 83, 298–305 (2009).
[41] D.L. King, W.E. Boyson, and J.A. Kratochvill, “Photovoltaic Array Performance Model,” Technical Report from Sandia National Laboratories, United States, 1-43 (2004).
[42] Web Page from Newport Inc., http://search.newport.com/?q=94021A.
[43] Web Page from International Organization for Standardization (ISO), http://www.iso.org/iso/home.html.
[44] Web Page from TES Inc., http://www.gztes.net/.
[45] Web Page from OPHIR Inc., http://www.ophiropt.com/.
[46] K. Araki, Y. Kemmoku, and M. Yamaguchi, “A Simple Rating Method for CPV Modules and Systems,” Photovoltaic Specialists Conference, San Diego, 1-6 (2008).
[47] S. Yoon, and V. Garboushian, “Reduced Temperature Dependence of High-Concentration Photovoltaic Solar Cell Open-Circuit Voltage (Voc) at High Concentration Levels,” Photovoltaic Energy Conversion, Waikoloa, 1500-1504 (1994).
[48] G. Peharz, J. P. F. Rodríguez, G. Siefer, and A. W. Bett, “Investigations on the Temperature Dependence of CPV Modules Equipped with Triple-Junction Solar Cells,” Progress in Photovoltaics, 19, 54-60 (2011).
[49] E. F. Fernández, A. J. G. Loureiro, P. Rodrigo, F. Almonacid, J. I. Fernández, P. J. P. Higueras, G. Almonacid, and A.J. G. Loureiro, “Calculation of Cell Temperature in a HCPV Module using Voc,” Electron Devices (CDE), Valladolid, 317-320 (2013).
[50] 蔡健雄,「太陽能電池模組溫度量測與預測技術建立」,行政院原子能委員會,委託研究計畫研究報告,民100。
[51] 蔡建雄,「聚光太陽電池模組溫度量測分析與預測技術建立」,行政院原子能委員會,委託研究計畫研究報告,民國101年。
[52] A. Cvetkovic, R. Mohedano, O. Gonzalez, P. Zamora, P. Benitez, P. M. Fernandez, A. Ibarreche, M. Hernandez, J. Chaves, and J. C. Miñano, “Performance Modeling of Fresnel-Based CPV Systems: Effects of Deformations under Real Operation Conditions,” AIP Conf. Proc., 1407(1), 74-78 (2011).
[53] E. F. Fernández1, A. J. García Loureiro, P. J. P. Higueras, and G. Siefer, “Monolithic III-V Triple-Junction Solar Cells under Different Temperatures and Spectra,” Electron Devices (CDE), Palma de Mallorca, 1-4 (2011).
指導教授 韋安琪(An-Chi Wei) 審核日期 2016-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明