博碩士論文 102328011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:145 、訪客IP:18.223.20.57
姓名 魏健桓(Chien-Huan Wei)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 電漿輔助低溫化學氣相沉積法直接成長石墨烯/金屬複合透明導電薄膜
(Direct growth graphene / metal composite transparent conductive film by low temperature plasma enhanced chemical vapor deposition)
相關論文
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 軟性電子阻水氣膜之有機層組成研究
★ 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性★ 石墨烯與超導金屬介面的電子穿隧行為
★ 石墨烯透明導電膜與其成長模型之研究★ 電漿輔助石墨烯直接成長在Pt上成長機制
★ 以磁控電漿輔助化學氣相沉積法製鍍有機矽阻障層之研究★ 以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究
★ 快速退火影響石墨烯晶粒尺寸之研究★ 快速退火生長高品質石墨烯
★ 改善石墨烯轉印品質之研究★ 暗場顯微鏡系統監控石墨烯成長之研究
★ 以射頻磁控濺鍍鍍製多層有機矽阻障層研究★ 真空聚合物薄膜在三維曲面研究
★ 利用有限元素方法分析光譜合束器之多層介電質繞射光柵之繞射效率★ 化學氣相沉積石墨烯透明導電膜之製程與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 石墨烯為近幾年備受矚目的材料之一,其擁有優異的電性、高穿透率及高導熱性,亦為可撓曲的透明導電薄膜,目前的研究皆希望取代傳統的透明導電膜如氧化鋅鋁(AZO)、氧化銦錫(ITO)等。由於石墨烯需在高溫環境以金屬催化合成,現有的光電產品皆無法承受其高溫製程(1000 ℃),必須依靠轉印的方式來使用。本研究為了解決高溫製程與轉印步驟,提出直接成長石墨烯在光電產品的方式,先使用磁控濺鍍法鍍製超薄且高穿透率的金屬薄膜作為成長石墨烯的催化金屬,為了保持透明度,此金屬膜穿透率必須在80 %@550 nm以上(包含透明基板,如玻璃基板、石英基板、藍寶石基板等等),厚度必須要在5奈米以下,再使用電漿輔助低溫化學氣相沉積法於250 ℃成長石墨烯,得到石墨烯/金屬複合透明導電薄膜,片電阻值為755.48 ohm/sq,穿透率維持在近75 % @ 550 nm,完成可直接成長在光電產品上之透明導電薄膜的研究。

並同時研究低溫直接成長石墨烯於基板上的技術,利用鎳金屬的溶入-析出特性,以低溫製程的電漿輔助化學氣相沉積法直接成長石墨烯於基板上。

摘要(英) Graphene is one of the popular materials in recent years, which has excellent electrical properties, high transmittance and high thermal conductivity; it can also be the flexible transparent conductive film. The present research are hoped to replace the traditional transparent conductive, such as Aluminum Zinc Oxide (AZO), Indium Tin oxide (ITO) etc. Because of graphene growth required a metal catalytic synthesis at very high temperature (1000 ℃), and the photovoltaic products are unable to process high-temperature. So, to replace the traditional transparent conductive by graphene, there are many challenges to overcome.

In this study, the objective is directly grown graphene on optoelectronic products without high temperature process and transfer. First, coating the high transmittance metal film as the catalytic metal by magnetron sputter, and then growth graphene on metal thin film by low-temperature plasma enhanced chemical vapor deposition (PECVD), in order to maintain transparency, the metal film transmittance must be more than 80% at 550 nm (containing a transparent substrate, such as glass, quartz, sapphire, etc.), and the thickness must be 5 nm or less. Then use a low temperature plasma enhanced chemical vapor deposition to grow graphene at 250 ℃.

The result is the graphene / metal composite transparent conductive film, which sheet resistance was 755.48 ohm / square, and transmittance remained at nearly 75% at 550 nm, complete growth in direct research on the transparent conductive film photovoltaic products.

And research the low temperature process of PECVD of directly grown graphene on the substrate by using nickel′s characteristics: dissolved and precipitation.

關鍵字(中) ★ 鎳
★ 磁控濺鍍
★ 低溫
★ 電漿輔助化學氣相沉積法
★ 石墨烯
關鍵字(英) ★ Nickel
★ magnetron sputter
★ low temperature
★ plasma enhanced chemical vapor deposition (PECVD)
★ graphene
論文目次 摘要 i

Abstract ii

致謝 iii

目錄 iv

圖目錄 vii

表目錄 xi

第一章 緒論 1

1-1 前言 1

1-2 研究動機 2

1-3 研究架構 4

第二章 基礎理論文獻回顧 5

2-1 石墨烯基礎理論 5

2-2 透明導電薄膜 8

2-3 石墨烯製備方法 10

2-3-1 機械剝離法 11

2-3-2 碳化矽磊晶法 12

2-3-3 氧化石墨烯還原法 12

2-3-4 化學氣相沉積法 13

2-3-5 電漿輔助化學氣相沉積法 15

2-4 電漿源原理及濺鍍法 17

2-5 金屬薄膜成長石墨烯 20

2-6 選用鎳作為CVD製程之金屬薄膜 26

第三章 實驗方法與儀器介紹 27

3-1 石墨烯/鎳金屬複合薄膜製程 27

3-1-1 鍍製金屬薄膜 27

3-1-2 電漿輔助化學氣相沉積法製程介紹 28

3-1-3 以PECVD成長石墨烯/鎳金屬複合薄膜 29

3-1-4 利用鎳金屬特性以PECVD直接成長石墨烯於基板 30

3-2 分析儀器 30

3-2-1 拉曼光譜儀 31

3-2-2 四點探針 33

3-2-3 霍爾量測儀 34

3-2-4 光譜儀 35

3-2-5 掃描式電子顯微鏡 35

3-2-6 原子力顯微鏡 36

第四章 實驗結果與討論 38

4-1 磁控濺鍍法之金屬薄膜成長石墨烯/鎳複合薄膜 38

4-1-1 溫度對於成長石墨烯之影響 38

4-1-2 複合薄膜之光性與電性分析 43

4-1-3 複合薄膜之拉曼量測與SEM表面量測 46

4-1-4 分析金屬薄膜於成長前後表面形貌 49

4-2 直接成長石墨烯於非金屬催化基板 52

4-2-1 光性與電性分析 53

4-2-2 拉曼分析 56

4-3 比較兩種石墨烯成長方式 59

第五章 結論與未來工作 64

參考文獻 67

參考文獻 [1] HW Kroto, JR Heath, SC O′Brien, RF Curl, RE Smalley C60: buckminsterfullerene. Nature 318:162-3 (1985).

[2] S. Iijima, Helical microtubules of graphitic carbon. Nature 354:56-58 (1991).

[3] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V.Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science 306:666-669 (2004).

[4] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials 6:183-191 (2007).

[5] J.S. Bunch, Mechanical and electrical properties of graphene sheets, in, (2008).

[6] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene, Science 320:1308 (2008).

[7] K.I. Bolotina, K.J. Sikes, Z. Jiang, M. Klimac, G. Fudenberga, J. Honec, P. Kima, H.L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications 146 351-355 (2008).

[8] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 8:902–907 (2008).

[9] I.W. Frank, D.M. Tanenbaum, A.M. van der Zande, P.L. McEuen, Mechanical properties of suspended graphene sheets, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25:2558-2561 (2007).

[10] G. Jo, M. Choe, S. Lee, W. Park, Y.H. Kahng, T. Lee, The application of graphene as electrodes in electrical and optical devices, Nanotechnology 23:112001 (2012).

[11] L. Colombo, X. Li, B. Han, W. Cai, Y. Zhu, R.S. Ruoff, Growth kinetics and defects of CVD graphene on Cu, The Electrochemical Society 5:109-114 (2010).

[12] R. Martinazzo, S. Casolo, G.F. Tantardini, The effect of atomic-scale defects and dopants on graphene electronic structure, in: D.S. Mikhailov (Ed.) Physics and Applications of Graphene - Theory arXiv:1104.1302 (2011).

[13] S. Ulstrup, M. Bianchi, R. Hatch, D. Guan, A. Baraldi, D. Alf, L. Hornekær, P. Hofmann, High-temperature behaviour of supported graphene: electron-phonon coupling and substrate-induced doping, Physical review B 86: 161402 (2012).

[14] A. Kasry, M.A. Kuroda, G.J. Martyna, G.S. Tulevski, A.A. Bol, Chemical doping of large-area stacked graphene films for use as transparent,conducting electrodes, ACS Nano 4:3839-3844 (2010).



[15] A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel, C. V. Haesendonck Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19:305604 (2008).

[16] A. Dato, V. Radmilovic, Z. Lee, J. Phillips, M. Frenklach, Substrate-free gas-phase synthesis of graphene sheets. Nano Lett. 8:2012-2016 (2008).

[17] A.K. Geim, Graphene: status and prospects, Science 324, 1530-1534 (2009).

[18] A. Bostwick, J. McChesney, T. Ohta, E. Rotenberg, T. Seyller, K. Horn, Experimental studies of the electronic structure of graphene, in, 84:380-413 (2009).

[19] A.H. Castro Neto, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Reviews of Modern Physics 81,109-162 (2009).

[20] S. Reich, J. Maultzsch, C. Thomsen, P. Ordejón, Tight-binding description of graphene, Physical Review B 66:035412 (2002).

[21] A. Teng, Physical properties of carbon nanotubes, in, (2010).

[22] F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics, Nature Photonics 4:611-622 (2010).

[23] Semenoff, G. W. Condensed-Matter Simulation of a Three-Dimensional Anomaly. Physical Review Letters 53: 5449 (1984).

[24] 林永昌, 呂俊頡, 鄭碩方, 邱博文, 石墨烯之電子能帶特性與其元件應用, in, Physics bimonthly (2011).

[25] E.Y. Andrei, G. Li, X. Du, Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport, Rep Prog Phys 75:056501 (2012).

[26] Andre K. Geim, Philip Kim, Carbon Wonderland, Scientific American 298:90-97 (2008).

[27] W.A.D. Heer, C. Berger, X. Wu, P.N. First, E.H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M.L. Sadowski, M. Potemski, G. Martinez, Epitaxial graphene, Solid State Communications 143:92-100 (2007).

[28] S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, R. S. Ruoff, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J. Mater. Chem. 16(2):155-158 (2006).

[29] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater. 22:3906-3924 (2010).

[30] H. He, J. Klinowski, M. Forster, A. Lerf, A new structural model for graphite oxide. Chemical Physics Letters 287:53–56 (1998).

[31] K. Xiao, H. Wu, H. Lv, X. Wu, H. Qian, The study of the effects of cooling conditions on high quality graphene growth by the APCVD method. Nanoscale 5:5524–5529 (2013).

[32] Q. Yu, J. Lian, S. Siriponglert, H Li, Y.P. Chen, S.S Pei, Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters 93, 113103 (2008).

[33] A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, A. A. Zolotukhin, Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 45, 2017–2021 (2007).

[34] A. Reina, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9 (1), 30-35 (2009).

[35] S.H. Chan, S.H. Chen, W.T. Lin., M.C. Li, Y.C. Lin, C.C. Kuo, Low-temperature synthesis of graphene on Cu using plasma-assisted thermal chemical vapor deposition. Nanoscale Research Letters 8:285 (2013).

[36] A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel, C. V. Haesendonck, Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19:305604 (2008).

[37] T Yamada, M Ishihara, J Kim, M Hasegawa, S Iijima, A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294mm width graphene films at low temperature. Carbon 50, 2615-2619 (2012).

[38] G. Kalita, K. Wakita and M. Umeno, Low temperature growth of graphene film by microwave assisted surface wave plasma CVD for transparent electrode application, RSC Advances 2:2815-2820 (2012).

[39] J. Kim, M. Ishihara, Y. Koga, K. Tsugawa, M. Hasegawa, Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition. Appl. Phys. Lett. 98, 091502 (2011).

[40] L Tonks, I Langmuir, A General Theory of the Plasma of an Arc, Phys. Rev. 34, 876 (1929).

[41] J.R.Roth, Industrial plasma engineering-Volume 1 : Principles Institute of Physics (1995).

[42] J. Hopwood, Review of inductively coupled plasmas for plasma processing, Plasma Sources Science and Technology (1992).

[43] S Matsuo, M Kiuchi, Low temperature chemical vapor deposition method utilizing an electron cyclotron resonanceplasma, Japanese journal of applied physics 22, L210 (1983).

[44] 李正中,「薄膜光學與鍍膜技術 (第七版)」,藝軒圖書出版社 (2012).

[45] A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor, and Y. Zhang, Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces. Nano Lett. 10 (5), pp 1542-1548 (2010).

[46] Y. H. Lee and J. H. Lee, Scalable growth of free-standing graphene wafers with copper(Cu) catalyst on SiO2-Si substrate : Thermal conductivity of the wafers. Applied Physics Letters 96, 083101 (2010).





[47] A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer, J. Kong, Growth of Large-Area Single- and Bi-Layer Graphene by Controlled Carbon Precipitation on Polycrystalline Ni Surfaces. Nano Res. 2: 509 516 (2009).

[48] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706-710 (2009).

[49] E. Sutter, P. Albrecht, and P. Sutter, Graphene growth on polycrystalline Ru thin films. Applied Physics Letters 95,133109 (2009).

[50] B. J. Kang, J. H. Mun, C. Y. Hwang, B. J. Cho, Monolayer graphene growth on sputtered thin film platinum. Journal of Applied Physics 106, 104309 (2009).

[51] C.Y. Su, A.Y. Lu, C.Y. Wu, Y.T. Li, K.K. Liu, W. Zhang, S.Y. Lin, Z.Y. Juang, Y.L. Zhong, F.R. Chen, L.J. Li, Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition. Nano Lett. 11, 3612–3616 (2011).

[52] Toshiaki Kato, Rikizo Hatakeyama, Direct Growth of Doping-Density-Controlled Hexagonal Graphene on SiO2 Substrate by Rapid-Heating Plasma CVD, ACS Nano 6 (10), pp 8508–8515 (2012).

[53] K.J. Peng, C.L. Wu, Y.H. Lin, Y.J. Liu, D.P. Tsai, Y.H. Pai, G.R. Lin, Hydrogen-free PECVD growth of few-layer graphene on an ultra-thin nickel film at the threshold dissolution temperature, J. Mater. Chem. C1, 3862-3870 (2013).

[54] Maria Losurdo, Maria Michela Giangregorio, Pio Capezzuto, Giovanni Bruno, Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure, Phys. Chem. Chem. Phys. 13, 20836–20843 (2011).

[55] From Wikipedia, the free encyclopedia, Raman spectroscopy. http://en.wikipedia.org/wiki/Raman_spectroscopy

[56] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene, Physics Reports 473, 51-87 (2009).

[57] A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Poschl, Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 43, 1731-1742 (2005).

[58] Edwin Hall, On a New Action of the Magnet on Electric Currents, American Journal of Mathematics vol 2 (1879).

[59] 吳至彧、柳克強、蔡春鴻,「利用化學氣相沉積法合成數層石墨烯以及其透明導電薄膜之研究」,清華大學 (2009).

[60] 汪建民,「材料分析」,中國材料科學學會發行 (1998).

[61] 鄭又彰、郭倩丞,「電漿輔助石墨烯直接成長在Pt上成長機制」,中央大學 (2014).

[62] S. De, J.N. Coleman, Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films?, ACS Nano. 4, 2713-2720 (2010).

指導教授 郭倩丞(Chien-Cheng Kuo) 審核日期 2015-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明